簡易檢索 / 詳目顯示

研究生: 黃冠淳
Kuan-Chun Huang
論文名稱: 高等效全向輻射功率圓極化自振式主動集成天線之研究
A Study of High Equivalent Isotropic Radiated Power Circularly Polarized Self-Oscillating Integrated Antenna
指導教授: 馬自莊
Tzyh-Ghuang Ma
口試委員: 馬自莊
Tzyh-Ghuang Ma
廖文照
Wen-Jiao Liao
陳筱青
Hsiao-Chin Chen
林坤佑
Kun-You Lin
蔡政翰
Jeng-Han Tsai
學位類別: 碩士
Master
系所名稱: 電資學院 - 電機工程系
Department of Electrical Engineering
論文出版年: 2021
畢業學年度: 109
語文別: 中文
論文頁數: 136
中文關鍵詞: 自振式主動集成天線高等效全向輻射功率超穎物質圓極化特徵模分析人造磁導體
外文關鍵詞: self-oscillating active integrated antenna, high equivalent isotropic radiated power, metamaterial, circular polarization, characteristic model Analysis, artificial magnetic conductor
相關次數: 點閱:321下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究主旨為「高等效全向輻射功率圓極化自振式主動集成天線」,乃利用高功率電晶體與高天線增益達到目的。為了使振盪器能有效激發接地面之輻射,同時又具有高品質因數,本研究採用超穎物質共振器作為激發源,而為達圓極化自振式主動天線設計之通則,吾人引入特徵模分析(Characteristic mode analysis, CMA)設計圓極化天線並選擇最佳饋入點,最後於天線背面放置人造磁導體反射板來提升整體天線增益。
    本研究提出兩款高等效全向輻射功率圓極化自振主動集成天線。第一款採用特徵模分析設計一X型圓極化槽孔天線並選擇最佳饋入點,並以超穎物質共振器作為激發源於選擇之饋入點激發之,再於背面放置人造磁導體作為反射板,其等效全向輻射功率可達18.5 dBm,直流-射頻轉換效率為 29 %,xz平面之可用圓極化範圍為-50°~35°,yz平面之可用圓極化範圍為-28°~62°。遵循第一款主動天線設計法則,吾人提出第二款T型圓極化槽孔天線,其等效全向輻射功率可達18.7 dBm,直流-射頻轉換效率為22.1 %,xz平面之可用圓極化範圍為-42°~45°,yz平面之可用圓極化範圍為-30°~53°。


    The main purpose of this study is, "High Equivalent Isotropic Radiated Power Circularly Polarized Self-Oscillating Integrated Antenna", which uses high power transistors and high antenna gain to achieve the goal. Metamaterial resonators are used to excite the ground plane effectively so as achieve high quality factor at the same time. In order to achieve the general principles of circularly polarized self-oscillating integrated antenna design, this thesis introduces characteristic model Analysis (CMA) into the circularly polarized antenna design and select the best feeding point. Finally, an artificial magnetic conductor (AMC) is placed on the back of the antenna to increase the overall antenna gain.
    There are two versions of high equivalent isotropic radiated power circularly polarized self-oscillating integrated antenna are proposed and demonstrated. The first CP-AIA is proposed based on characteristic mode analysis to design an X-shaped circularly polarized slot antenna and select the best feeding point. Using the metamaterial resonator as the excitation source to excite the selected feeding point, and then place an artificial magnet conductor on the back of antenna, the equivalent isotropic radiated power can reach 18.5 dBm, the DC-RF conversion efficiency is 29%, the effective circular polarization region of the xz plane is -50°~35°, and the yz plane is -28°~62°. Following the first active antenna design rule, the T-shaped circularly polarized slot antenna is proposed, which has an equivalent isotropic radiated power of 18.7 dBm, the DC-RF conversion efficiency of 22.1%, the effective circular polarization region of the xz plane is -42°~45°, and the yz plane is -30°~53°.

    摘要 I Abstract II 誌謝 III 目錄 IV 圖目錄 VI 表目錄 XI 第一章 緒論 1 1.1研究動機與目的 1 1.2文獻探討 2 1.3研究貢獻 5 1.4論文組織 6 第二章 特徵模分析於圓極化自振式主動集成天線設計之驗證 7 2.1前言 7 2.2自振式主動集成天線之設計與分析流程 8 2.3電晶體量測與模型建立 9 2.4以特徵模分析實現圓極化自振式主動集成天線 17 2.4.1 特徵模分析原理 17 2.4.2 以特徵模分析尋找最佳饋入點 18 2.4.3 超穎物質共振器之設計 21 2.4.4以特徵模分析之圓極化主動天線設計與分析 29 2.4.5模擬與量測結果 34 2.5結語 39 第三章 圓極化自振式主動天線設計 40 3.1 前言 40 3.2 X型圓極化槽孔天線 40 3.2.1 以特徵模分析尋找最佳饋入點 40 3.2.2 超穎物質共振器之設計 42 3.2.3 X型圓極化主動槽孔天線設計與分析 48 3.2.4模擬與量測結果 53 3.3 T型圓極化槽孔天線 57 3.3.1 以特徵模分析尋找最佳饋入點 57 3.3.2超穎物質共振器之設計 59 3.3.3T型圓極化主動槽孔天線設計與分析 65 3.3.4模擬與量測結果 70 3.4 結語 74 第四章 以人造磁導體反射板實現單向圓極化主動槽孔天線 75 4.1 前言 75 4.2 人造磁導體反射板之設計 76 4.3 X型圓極化槽孔天線與人造磁導體反射板之整合 80 4.3.1 X型槽孔天線分析與設計 80 4.3.2 模擬與量測結果 89 4.4 T型圓極化槽孔天線與人造磁導體反射板之整合 92 4.4.1 T型開槽天線分析與設計 92 4.4.2 模擬與量測結果 100 4.5 文獻效力與比較 103 4.6 結語 105 第五章 結論 106 5.1 總結 106 5.2 未來發展 107 參考文獻 108 附錄 114

    [1]D. V. Wageningen and T. Staring, “The Qi wireless power standard,” Proc. 14th Int. Power Electron. Motion Control Conf. (EPE-PEMC), pp. S15-25-S15-32, Sept. 2010.
    [2]D. Wang, D. Chen, B. Song, N. Guizani, X. Yu, and X. Du, “From IoT to 5G I-IoT: The Next Generation IoT-Based Intelligent Algorithms and 5G Technologies,” IEEE Communications Mag., Vol. 56, no. 10, pp. 114-120, Oct. 2018.
    [3]A. Costanzo and D. Masotti, “Smart Solutions in Smart Spaces: Getting the Most from Far-Field Wireless Power Transfer,” IEEE Microwave Mag., Vol. 17, no. 5, pp. 30-45, May 2016.
    [4]Z. Popović, E. A. Falkenstein, D. Costinett, and R. Zane, “Low-power far-field wireless powering for wireless sensors,” Proc. IEEE, vol. 101, no. 6, pp. 1397–1409, Jun. 2013.
    [5]J. Masuch, M. Delgado-Restituto, D. Milosevic, and P. Baltus, “Co-integration of an RF energy harvester into a 2.4 GHz transceiver,” IEEE J. Solid-State Circuits, vol. 48, no. 7, pp. 1565–1574, Jul. 2013.
    [6]H. Reinisch et al., “An electro-magnetic energy harvesting system with 190 nW idle mode power consumption for a BAW based wireless sensor node,” IEEE J. Solid-State Circuits, vol. 46, no. 7, pp. 1728–1741, Jul. 2011.
    [7]C. H. P. Lorenz et al., “Breaking the efficiency barrier for ambient microwave power harvesting with heterojunction backward tunnel diodes,” IEEE Trans. Microw. Theory Techn., vol. 63, no. 12, pp. 4544–4555, Dec. 2015.
    [8]C. Liu, Y. Zhang, and X. Liu, “Circularly Polarized Implantable Antenna for 915 MHz ISM-Band Far-Field Wireless Power Transmission,” IEEE Antennas Wireless Propag. Lett., vol. 17, no. 3, pp. 373–376, Mar. 2018.
    [9]A. K. Baghel, S. S. Kulkarni, and S. K. Nayak, “Far-Field Wireless Power Transfer Using GRIN Lens Metamaterial at GHz Frequency,” IEEE Mircow. Wireless Components Lett., vol. 29, no. 6, pp. 424–426, Jun. 2019.
    [10]P. Liao and R. A. York, “A varactor tuned patch oscillator for active arrays,” IEEE Microw. Guided Wave Lett., vol. 4, no. 10, pp. 335–337, Oct. 1994.
    [11]W. J. Tseng and S. J. Chung, “Analysis and application of a two-port aperture-coupled microstrip antenna,” IEEE Trans. Microw. Theory Techn., vol. 46, no. 5, pp. 530–535, May. 1998.
    [12]K. H. Y. Ip, T. M. Y. Kan, and G. V. Eleftheriades, “A single-layer CPW-fed active patch antenna,” IEEE Microw. Guided Wave Lett., vol. 10, no. 2, pp. 64–66, Feb. 2000.
    [13]C. H. Mueller, R. Q. Lee, R. R. Romanofsky, C. L. Kory, K. M. Lambert, F. W. V. Keuls, and F.A.Miranda, “Small-size X-band active integrated antenna with feedback loop,” IEEE Trans. Antennas Propag., vol. 56, no. 5, pp. 1236–1241, May 2008.
    [14]R. D. Martinez and R. C. Compton, “High-efficiency FET/microstrip patch oscillators,” IEEE Antennas and Propag. Mag., vol. 36, no. 1, pp. 16–19, Feb. 1994.
    [15]Y.-Y. Lin, C.-H. Wu, and T.-G. Ma, “Miniaturized self-oscillating annular ring active integrated antennas,” IEEE Trans. Antennas Propag.,vol. 59, no. 10, pp. 3597–3606, Oct. 2011.
    [16]C,-H. Wu, and T.-G. Ma, “Self-oscillating dual-ring active integrated antenna,” IEEE Int. Symp. on Antennas and Propagation Digest, 2011, pp. 2457-2460.
    [17]C.-H. Wu and T.-G. Ma, “Miniaturized self-oscillating active integrated antenna with quasi-isotropic radiation,” IEEE Trans. Antennas Propag., vol.62 ,no.2 , pp.933-936 , Feb. 2014.
    [18]A. Lai, C. Carloz, and T. Itoh, “Composite right/left-handed transmission line metamaterials,” IEEE Microw. Mag., vol. 5, no. 3, pp. 34-50, Sep. 2004.
    [19]G. V. Eleftheriades, “Enabling RF/microwave devices using negative refractive-index transmission-line (NRI-TL) metamaterials,” IEEE Antennas Propag. Mag., vol. 49, no. 2, pp. 34-51, Apr. 2007
    [20]C.-J. Lee, H. Wei, A. Gummalla, and M. Achour, “Small antenna based on CRLH structures: Concept, design, application,” IEEE Antennas Propag. Mag., vol. 53, no. 2, pp. 10-25, Apr. 2011.
    [21]Y. Dong and T. Itoh, “Miniaturized substrate integrated waveguide slot antennas based on negative order resonance,” IEEE Trans. Antennas Propag., vol. 58, no. 12, pp. 3856-3864, 2010
    [22]M. A. Antoniades and G. V. Eleftheriades, “A folded-monopole model for electrically small NRI-TL metamaterial antennas,” IEEE Antennas Wireless Propag. Lett., vol. 7, pp. 425-428, Oct. 2008.
    [23]A. Sanada, C. Carloz, and T. Itoh, “Novel zeroth-order resonator composite right/left handed transmission line resonators,” in IEEE Asia Pacific Conf., Seoul, Korea, pp. 1588-1591, Dec. 2003.
    [24]Z.-H. Liu, Y.-W. Chang, and T.-G. Ma, “High-Efficiency Self-Oscillating Active Integrated Antenna Using Metamaterial Resonators and Its Application to Multicarrier Radio Frequency Identification Systems,” IEEE Trans. Antennas Propag., vol. 64, no. 9, pp. 3803-3810, Sept. 2016.
    [25]Y.-W. Chang and T.-G. Ma, “Zeroth-order self-oscillating active integrated antenna using cross-coupled pair,” IEEE Trans. Antennas Propag., vol. 65, no. 10, pp. 5011-5018, Oct. 2017.
    [26]Z.-H. Liu, H. N. Chu, and T.-G. Ma, “Self-Oscillating Active Integrated Antenna With Harmonic Suppression Using Metamaterial Resonators and Ground Radiation,” IEEE Antennas Wireless Propag. Lett., vol. 17, no. 9, pp. 1687-1691, Sept. 2018.
    [27]J. Birkland and T. Itoh, “A circularly polarized FET oscillator active radiating element,” IEEE MTT-S Int. Microw. Symp. Dig., pp. 1265-1268, Jun. 1991.
    [28]S. Yang, V. F. Fusco, and D. E. J. Humphrey, “Ring-coupled-oscillator sequentially rotated active antenna,” IEEE Trans. Microw. Theory Techn., vol. 49, no. 8, pp. 1492-1497, Aug. 2001.
    [29]L. Dussopt and J. M. Laheurte, “Coupled oscillator array generating circular polarization,” IEEE Microw. Guided Wave Lett., vol. 9, pp. 160-162, Apr. 1999.
    [30]R. K. Singh, A. Basu, and S. K. Koul, “Asymmetric coupled polarization switchable oscillating active integrated antenna,” Proc. Asia–Pacific Microw. Conf. (APMC), pp. 1-4, 2016.
    [31]H. N. Chu, Y.-Y. Chen, Y.-L. Tsai, and T.-G. Ma, “Low-cost polarization sensing system for self-oscillating circularly-polarized active integrated antenna,” IEEE Access, vol. 7, pp. 170534-170544, 2019.
    [32]Y.-L. Tsai, H. N. Chu, and T.-G. Ma, “Self-oscillating Circularly-Polarized Active Integrated Monopole Antenna Using Cross-Coupled Pair and Inverted-L Strip,” IEEE Antenna Wireless Propag. Lett., vol. 19, no. 7, pp. 1132-1136, Jul. 2020.
    [33]吳宣峰, 以零階共振器實現低成本圓極化自振式主動集成天線, 國立台灣科技大學電機工程研究所, 碩士論文, 民國109.
    [34]葉耘傑, 以零階共振器實現低成本全向性圓極化主動天線, 國立台灣科技大學電機工程研究所, 碩士論文, 民國109.
    [35]R. Garbacz and R. Turpin, “A generalized expansion for radiated and scattered fields,” IEEE Trans. Antennas Propag., vol. 19, no. 3, pp. 348-358, May 1971.
    [36]Y. Chen and C.-F. Wang, Characteristic Modes Theory and Applications in Antenna Engineering, Wiley, 2015.
    [37]Y. Chen and C.-F. Wang, “Characteristic-Mode-Based Improvement of Circularly Polarized U-Slot and E-Shaped Patch Antennas,” IEEE Antenna Wireless Propag. Lett., vol. 11, pp. 1474-1477, 2012.
    [38]C. Deng, Z. Feng, and S. V. Hum, “MIMO Mobile Handset Antenna Merging Characteristic Modes for Increased Bandwidth,” IEEE Trans. Antennas Propag., vol. 64, no. 7, pp. 2660-2667, Jul. 2016.
    [39]E. Safin and D. Manteuffel, “Reconstruction of the Characteristic Modes on an Antenna Based on the Radiated Far Field,” IEEE Trans. Antennas Propag., vol. 61, no. 6, pp. 2964-2971, Jun. 2013.
    [40]M. Han and W. Dou, “Compact Clock-Shaped Broadband Circularly Polarized Antenna Based on Characteristic Mode Analysis,” IEEE Access, vol. 7, pp. 159952-159959, 2019.
    [41]Keysight Knowledge Center. Available: https://edadocs.software.keysight.com/pages/viewpage.action?pageId=6063102
    [42]T. Ohira, “Rigorous Q-factor formulation for one- and two-port passive linear networks from an oscillator noise spectrum viewpoint,” IEEE Trans. Circuits Sys. II, Exp. Briefs, vol. 52, no. 12, pp. 846-850, Dec. 2005.
    [43]D. Sievenpiper et al., “High-impedance electromagnetic surfaces with a forbidden frequency band,” IEEE Trans. Microw. Theory Techn., vol. 47, no. 11, pp. 2059-2074, Nov. 1999.
    [44]N. M. Mohamed-Hicho et al., “A Novel Low-Profile High-Gain UHF Antenna Using High-Impedance Surfaces,” IEEE Antenna Wireless Propag. Lett., vol. 14, pp. 1014-1017, 2015.
    [45]B. S. Cook and A. Shamin, “Utilizing Wideband AMC Structures for High-Gain Inkjet-Printed Antennas on Lossy Paper Substrate,” IEEE Antenna Wireless Propag. Lett., vol. 12, pp. 76-79, 2013.
    [46]Y. Zhang et al., “Planar artificial magnetic conductors and patch antennas,” IEEE Trans. Antennas Propag., vol. 51, no. 10, pp. 2704-2712, Oct. 2003.

    無法下載圖示 全文公開日期 2026/09/17 (校內網路)
    全文公開日期 2026/09/17 (校外網路)
    全文公開日期 2026/09/17 (國家圖書館:臺灣博碩士論文系統)
    QR CODE