簡易檢索 / 詳目顯示

研究生: 陳榮宏
Jung-hung Chen
論文名稱: 生物可降解型聚酯(PBAT)混摻有機黏土複合材料特性研究
Characterization of Nanocomposites of Poly(butylene adipate-co-terephthalate) Blending with Organoclay
指導教授: 楊銘乾
Ming-Chien Yang
口試委員: 邱文英
none
邱顯堂
none
邱士軒
none
周啟雄
none
安大中
none
學位類別: 博士
Doctor
系所名稱: 應用科技學院 - 應用科技研究所
Graduate Institute of Applied Science and Technology
論文出版年: 2014
畢業學年度: 103
語文別: 中文
論文頁數: 101
中文關鍵詞: 生物降解性奈米混摻複材順丁烯二酸酐接枝
外文關鍵詞: Biodegradation, Nanocomposites, crosslinked
相關次數: 點閱:301下載:2
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

本論文以生物可降解型聚酯類的聚己二酸共對苯二甲酸丁二酯(polybutylene adipate-co-terephthalate, PBAT)為基材,利用溶液及熔融共混方式分別與天然黏土(蒙脫土)和有機改質黏土製備有機無機混摻複合材料。經由不同混摻條件下製備的混摻複合材料,探討其拉伸、熱學、結晶、型態、降解及透濕等物性行為,以評估此類生物可降解聚酯做為包裝材的應用潛力。
首先,經由混摻複材的特性研究發現PBAT與有機改質黏土的混摻複材其表面型態較為平滑,且有機改質黏土的矽酸鹽層在基材中分散較為細小且均勻。而加入有機改質粘土可提高PBAT基材的冷卻結晶溫度,並可以提高PBAT混摻複材的熱穩定性,同時因為有機黏土矽酸鹽層的屏蔽作用,使得水蒸氣通過率大幅的降低。另一方面,利用順丁烯二酸酐接枝的PBAT與不同黏土混摻複合材料的研究中,PBAT與順丁烯二酸酐接枝反應後將導致聚合物基材和矽酸鹽層產生化學或物理鍵結的形成,從而改變有機黏土的分散並與聚合物基材形成交互作用。此外,可發現PBAT基材表面的酸酐基可增加材料的親水性,從而使酵素藉由水做為介質更容易接觸到分子鏈上的酯鍵而產生降解的效果,致使順丁烯二酸酐接枝PBAT系列的混摻材料表現出更快的酵素降解速率。


Nanocomposites of poly(butylene adipate-coterephthalate) (PBAT) with montmorillonite (MMT) nanoparticles were prepared via solution and melt blending. Natural MMT was modified by octadecylamine (ODA) or dihexylamine (DHA). Intercalation of the organoclay in the PBAT matrix was studied by X-ray diffraction (XRD). The results from scanning electron microscope (SEM) showed that the surface morphology of nanocomposite of PBAT/ODA-modified MMT was smoother than that of PBAT/neat MMT. From the results of transmission electron microscope (TEM), the dispersion of ODA-modified MMT in the PBAT matrix was finer than that of neat MMT. The addition of organoclay can increase the cooling crystallization temperature of PBAT, as observed by differential scanning calorimetry (DSC). Furthermore, the addition of ODA-modified MMT can improve the thermal stability of PBAT nanocomposites, according to the results of thermogravimetric analyzer (TGA). The tensile strength was little affected, while the Young’s modulus was increased with the clay content. The photo degradation and the hydrolysis of PBAT were reduced by the addition of MMT and ODA-modified MMT. On the other hand, neat PBAT was grafted with maleic anhydride via melt grafting process. By the grafting of PBAT with maleic anhydride (MA), the enzymatic biodegradation of hybrids was increased, while the photodegradation of PBAT was reduced. Furthermore, although the hydrophilicity was increased, the transmission of water vapor was reduced by the addition of organically modified MMT.

摘要 ……………………………………………………………… I Abstract ………………………………………………………… II 誌謝 ……………………………………………………………… III 一、緒論 ………………………………………………………… 1 二、文獻回顧 …………………………………………………… 4 2.1 熱塑性塑膠…………………………………………………… 4 2.2 分解性高分子………………………………………………… 6 2.3 微生物系及天然合成系生物可降解聚酯…………………… 12 2.3.1 聚乳酸 ………………………………………………… 12 2.3.2 聚羥基脂肪酸酯 ……………………………………… 13 2.4 化學合成系生物可降解聚酯………………………………… 15 2.4.1 聚己內酯 ……………………………………………… 15 2.4.2 脂肪族共聚酯 ………………………………………… 16 2.4.3 芳香族共聚酯 ………………………………………… 16 2.4.4 聚酯酰胺 ……………………………………………… 19 2.5 生物可分解聚酯/黏土混摻複材 …………………………… 20 2.5.1 蒙脫土 ………………………………………………… 20 2.5.2 奈米複合材料製備方法 ……………………………… 21 2.5.3 複材結構 ……………………………………………… 22 2.5.4蒙脫土改質 …………………………………………… 23 2.5.5 生物可分解聚酯/蒙脫土奈米複材…………………… 23 2.6 高分子表面改質……………………………………………… 26 2.6.1 順丁烯二酸酐………………………………………… 26 2.7形態學分析…………………………………………………… 29 2.7.1 X-ray繞射分析………………………………………… 29 2.7.2 穿透式電子顯微鏡…………………………………… 31 2.7.3掃描式電子顯微鏡 …………………………………… 33 2.7.4 傅立葉轉換紅外光譜儀 ……………………………… 35 2.8熱性質及機械性質…………………………………………… 36 2.8.1熱重分析 ……………………………………………… 36 2.8.2 掃描式微差熱分析 …………………………………… 38 2.8.3 動態黏彈性機械分析儀 ……………………………… 38 2.8.4 機械性質 ……………………………………………… 39 2.9 非生物降解…………………………………………………… 42 2.9.1 光降解 ………………………………………………… 42 2.9.2 熱降解 ………………………………………………… 42 2.9.3 化學降解 ……………………………………………… 42 2.10 生物降解 …………………………………………………… 44 三、實驗材料與方法 …………………………………………… 46 3.1實驗材料……………………………………………………… 46 3.2實驗儀器……………………………………………………… 47 3.3 PBAT/黏土混摻複材特性分析……………………………… 48 3.3.1 有機黏土改質…………………………………………… 48 3.3.2 PBAT/黏土混摻複材薄膜製備 ………………………… 48 3.3.3 廣角X-ray繞射(WXRD)分析…………………………… 49 3.3.4 穿透式電子顯微鏡分析………………………………… 50 3.4.5 掃描式電子顯微鏡表面型態分析……………………… 50 3.3.6 掃描式微差熱分析……………………………………… 50 3.3.7 熱重(TGA)分析………………………………………… 50 3.3.8 拉伸(Tensile)性能 ……………………………………… 51 3.3.9 降解行為………………………………………………… 52 3.3.9.1 鹼水解 ……………………………………… 52 3.3.9.2 接觸角 ……………………………………… 52 3.3.9.3 紫外線降解 ………………………………… 52 3.3.10 水蒸氣透過率 ………………………………………… 53 3.4 MA-g-PBAT/黏土混摻複材特性分析 ……………………… 54 3.4.1有機黏土改質…………………………………………… 54 3.4.2 PBAT混摻複材製備…………………………………… 54 3.4.3 MA-g-PBAT混摻複材製備 …………………………… 55 3.4.4 動態機械性質分析 …………………………………… 55 3.4.5 拉伸(Tensile)性能 ……………………………………… 56 3.4.6 傅立葉轉換紅外線光譜分析………………………… 57 3.4.7 酵素降解……………………………………………… 57 四、結果與討論 ………………………………………………… 58 4.1 PBAT/黏土混摻複材之特性………………………………… 58 4.1.1表面分析 ……………………………………………… 58 4.1.2 X-ray繞射(XRD)分析 …………………………… 59 4.1.3熱分析和結晶行為 …………………………………… 61 4.1.4 PBAT複材拉伸性能…………………………………… 63 4.1.5降解行為 ……………………………………………… 67 4.1.6水蒸氣透過率 ………………………………………… 70 4.2 MA-g-PBAT/黏土奈米複材之特性 ………………………… 72 4.2.1形態學 ………………………………………………… 72 4.2.1.1 X-ray繞射(XRD)分析 ……………………… 72 4.2.1.2穿透式電子顯微鏡……………………………… 75 4.2.2熱性能和結晶行為 …………………………………… 76 4.2.3動態力學分析 ………………………………………… 77 4.2.4熱穩定性 ……………………………………………… 78 4.2.5拉伸性能 ……………………………………………… 81 4.2.6 降解行為……………………………………………… 84 4.2.7 水蒸氣透過率………………………………………… 86 五、結論………………………………………………………… 88 參考文獻…………………………………………………………… 90 作者簡歷…………………………………………………………… 101

[1] Ryding SO, Environmental Management Handbook, Amsterdam, The Netherlands, 5, 55 (1994)
[2] Brune D, The Global Environment-Science Technology and Management, 72, 3, 1157 (1997)
[3] Moon SI, Lee CW, Miyamoto M, Kimura Y, “Melt polycondensation of l-lactic acid with Sn(II) catalysts activated by various proton acids: a direct manufacturing route to high molecularweight poly(l-lactic acid)”, J Polym Sci Polym Chem, Vol. 38, pp. 1673-1679(2000).
[4] Moon SI, Lee CW, Taniguchi I, Miyamoto M, Kimura Y, “Melt/solid polycondensation of l-lactic acid: an alternative route to poly(llactic acid) with high molecular weight”, Polymer, Vol. 42, pp. 5059–5062(2001).
[5] Kaplan DL, Mayer JM, Ball D, McCassie J, Allen AL, Stenhouse P, Fundamentals of biodegradable polymers. In: Ching C, Kaplan DL, Thomas EL, editors. Biodegradable polymers and packaging. Lancaster: Technomic Pub. Co., pp. 1-42 (1993).
[6] Garlotta D, “A literature review of poly(lactic acid)”, J Polym Environ, Vol. 9, pp.63-84 (2001).
[7] Okada M, “Chemical syntheses of biodegradable polymers”, Prog Polym Sci, Vol. 27, pp.87-133 (2002).
[8] Albertsson AC, Varma IK, “Aliphatic polyesters: synthesis, properties and applications”, Adv Polym Sci, Vol. 157, pp.1-40 (2002).
[9] Lunt J, “Large-scale production, properties and commercial applications of polylactic acid polymers”, Polym Degrad Stabil, Vol. 59, pp. 145-152 (1998).
[10] Steinbuchel A, Doi Y, Polyesters III—applications and commercial products. Weinheim, Germany: Wiley-VCH (2002).
[11] Auras R, Harte B, Selke S, “An overview of polylactides as packaging materials”, Macromol Biosci, Vol. 4, pp.835-864 (2004).
[12] Van Tuil R, Fowler P, Lawther M, Weber CJ., Properties of biobased packaging materials. In: Biobased packaging materials for the food industry-status and perspectives, Frederiksberg, Denmark: KVL, pp. 8-33 (2000).
[13] Lehermeier HJ, Dorgan JR, Way JD, “Gas permeation properties of poly(lactic acid)”, J Membr Sci Vol. 190, pp. 243-251 (2001).
[14] Sinclair RG, “The case for polylactic acid as a commodity packaging plastic”, J Macromol Sci A, Vol. 33, pp. 585-597 (1996).
[15] McCarthy SP, Ranganthan A, Ma W, “Advances in properties and biodegradabilility of co-continuous, immiscible, biodegradable, polymer blends”, Macromol Symp, Vol. 144, pp. 63-72 (1999).
[16] Bastioli C, “Biodegradable materials-present situation and future perspectives”, Macromol Symp, Vol. 135, pp. 193-204 (1998).
[17] Tuominen J, Kylma J, Kapanen A, Venelampi O, ItavaaraM, Seppala J, “Biodegradation of lactic acid based polymers under controlled composting conditions and evaluation of the ecotoxicological impact”, Biomacromolecules, Vol. 3, pp. 445-455 (2002).
[18] De Koning GJM, “Prospects of bacterial poly[(R)-3-hydroxyalkanoates]”, Ph. D dissertation, Eindhoven University of Technology (1993).
[19] Madison LL, Huisman GW, “Metabolic engineering of poly(3-hydroxyalkanoates): from DNA to plastic”, Microbiol Mol Biol Rev, Vol. 63, pp. 21-53 (1999).
[20] Doi Y, Microbial polyesters, NewYork: John Wiley & Sons, Inc., (1990).
[21] Zinn M, Witholt B, Egli T, “Occurrence, synthesis and medical application of bacterial polyhydroxyalkanoate”, Adv Drug Deliv Rev, Vol. 53, pp. 5-21 (2001).
[22] Valentin HE, Broyles DL, Casagrande LA, Colburn SM, Creely WL, DeLaquil PA, “PHA production, from bacteria to plants”, Int J Biol Macromol, Vol. 25, pp. 303-306 (1999).
[23] Poirier Y, “Polyhydroxyalkanoate synthesis in plants as a tool for biotechnology and basic studies of lipid metabolism”, Prog Lipid Res, Vol. 41, pp. 131-155 (2002).
[24] Hori Y, Suzuki M, Yamaguchi A, Nishishita T, “Ring-opening polymerization of optically active β-butyrolactone using distannoxane catalysts: synthesis of high-molecular-weight poly(3-hydroxybutyrate)”, Macromolecules, Vol. 26, pp. 5533-5534 (1993).
[25] Hori Y, Takahashi Y, Yamaguchi A, Nishishita T, “Ring-opening copolymerization of optically active β-butyrolactone with several lactones catalyzed by distannoxane complexes: synthesis of new biodegradable polyesters”, Macromolecules, Vol. 26, pp. 4388-4390 (1993).
[26] Hori Y, Hagiwara T, “Ring-opening polymerisation of β-butyrolactone catalysed by distannoxane complexes: study of the mechanism”, Int J Biol Macromol, Vol. 25, pp. 235-247 (1996).
[27] Kobayashi T, Yamaguchi A, Hagiwara T, Hori Y, “Synthesis of poly(3-hydroxyalkanoate)s by ring-opening copolymerization of (R)- β-butyrolactone with other four-membered lactones using a distannoxane complex as a catalyst”, Polymer, Vol. 36, pp. 4707-4710 (1995).
[28] Nobes GAR, Kazlauskas RJ, Marchessault RH, “Lipase-catalyzed ring-opening polymerization of lactones: a novel route to poly(hydroxyalkanoate)s”, Macromolecules, Vol. 29, pp. 4829-4833 (1996).
[29] Juzwa M, Jedlinski Z, “Novel synthesis of poly(3- hydroxybutyrate)”, Macromolecules, Vol. 39, pp. 4627-4630 (2006).
[30] Asrar J, Mitsky TA, Shah DT, “Polyhydroxyalkanoates of narrow molecularweight distribution prepared in transgenic plants”, Patent US 6091002 (2000).
[31] Asrar J, Mitsky TA, Shah DT, “Polyhydroxyalkanoates of narrow molecular weight distribution prepared in transgenic plants”, Patent US 6228623 (2001).
[32] Vert M, Schwarch G, Coudane J, “Present and future of PLA polymers”, J Macromol Sci A, Vol. 32, pp. 787-796 (1995).
[33] Chiellini E, Solaro R, “Biodegradable polymeric materials”, Adv Mater, Vol. 8, pp. 305-313 (1996).
[34] Bastioli C, Cerutti A, Guanella I, Romano GC, Tosin M, “Physical state and biodegradation behavior of starch–polycaprolactone systems”, J Environ Polym Degrad, Vol. 3, pp. 81-95 (1995).
[35] Bastioli C, “Properties and applications of Mater-Bi starch-based materials”, Polym Degrad Stabil, Vol. 59, pp. 263-272 (1998).
[36] Averous L, Moro L, Dole P, Fringant C, “Properties of thermoplastic blends: starch–polycaprolactone”, Polymer, Vol. 41, pp. 4157-4167 (2000).
[37] Koenig MF, Huang SJ, “Evaluation of crosslinked poly(caprolactone) as a biodegradable, hydrophobic coating”, Polym Degrad Stabil, Vol. 45, pp. 139-144(1994).
[38] Tokiwa Y, Suzuki T, “Hydrolysis of polyesters by lipases”, Nature Vol. 270, pp. 76-78 (1977).
[39] Muller RJ, Witt U, Rantze E, Deckwer WD, “Architecture of biodegradable copolyesters containing aromatic constituents”, Polym Degrad Stabil, Vol. 59, pp. 203-208 (1998).
[40] Yokota Y, Marechal H, “Processability of biodegradable poly(butylene) succinate and its derivates”, Biopolymer Conference, Wurzburg, Germany (1999).
[41] Fujimaki T, “Processability and properties of aliphatic polyesters, ‘Bionolle’, synthesized by polycondensation reaction”, Polym Degrad Stabil, Vol. 59, pp. 209-214 (1998).
[42] Ratto JA, Stenhouse PJ, Auerbach M, Mitchell J, Farrell R, “Processing, performance and biodegradability of a thermoplastic aliphatic polyester/starch system”, Polymer, Vol. 40, pp. 6777-6788 (1999).
[43] Witt U, Einig T, Yamamoto M, Kleeberg I, Deckwer WD, Muller RJ, “Biodegradation of aliphatic-aromatic copolyesters: evaluation of the final biodegradability and ecotoxicological impact of degradation intermediates”, Chemosphere, Vol. 44, pp. 289-299 (2001).
[44] Grigat E, Koch R, Timmermann R, “BAR 1095 and BAK 2195: completely biodegradable synthetic thermoplastics”, Polym Degrad Stabil, Vol. 59, pp. 223-226 (1998).
[45] Fritz J, “Ecotoxicity of biogenic materials during and after their biodegradation”, Ph. D dissertation, University of Agriculture (1999).
[46] Bruns C, Gottschall R, De Wilde B, “Ecotoxicological trials with BAK 1095 according to DIN V 54900”, Orbit J, Vol. 1, pp. 1-10 (2001).
[47] M. Zanetti, S. Lomakin, G. Camino, “Polymer layered silicate nanocomposites”, Macromol Mater Eng, Vol. 279, pp. 1-9 (2000).
[48] M. Biswas, SS Ray, “Recent Progress in Synthesis and Evaluation Montmorillonite Nanocomposites”, J Advan in Poly Sci, Vol. 155, pp. 167-221 (2001).
[49] Pinnavaia TJ, Beall GW, Polymer-Clay Nanocomposites, John Wiley&Sons Ltd., pp. 50-59 (2000).
[50] Okada, Akane and Fukushima, Composite material and process for manufacturing same, US Patent 4,739,007 (1988).
[51] H. S. Nalwa, Handbook of surfaces and interfaces of materials-nanostructured materials, micelles and colloids, Stanford Scientific Corporation Los Angeles, California (2001).
[52] 巫雅惠,「以烷基胺鹽插層改質蒙脫土之攪磨剝層研究」,碩士論文,成功大學,台南 (2004)。
[53] David R. Lide, “CRC handbook of chemistry and physics: Polymer properties”, National Institute Standards and Technology, Stanford (2004).
[54] Breen C, Waston R, “Polycation-exchanged clays as sorbents for organic pollutants: Influence of layer charge on pollutant sorption capacity”, Journal of Colloid and Interface Science, Vol. 208, pp. 422-429 (1998).
[55] Okamoto M, Morita S, Taguchi H, Kim YH, Kotaka T, Tateyama H, “Synthesis and structure of smectic clay/poly(methyl methacrylate) and clay/polystyrene nanocomposites via in situ intercalative polymerization”, Polymer, Vol. 41, pp. 3887-3890 (2000).
[56] Delozier DM, Orwoll RA, Cahoon JF, Ladislaw JS, Smith JG, Connell JW, “Polyimide nanocomposites prepared from high-temperature reduced charge organoclays”, Polymer, Vol. 44, pp.2231-2241 (2003).
[57] Pollet E, Delcourt C, Alexandre M, Dubois P, “Transesterification catalysts to improve clay exfoliation in synthetic biodegradable polyester nanocomposites”, Eur Polym J, Vol. 42, pp. 1330-1341 (2006).
[58] Someya Y, Sugahara Y, Shibata M, “Nanocomposites based on poly(butylene adipate-co-terephthalate) and montmorillonite”, J Appl Polym Sci, Vol. 95, pp. 386-392 (2005).
[59] Chivrac F, Kadlecova Z, Pollet E, Averous L, “Aromatic copolyesterbasednano- biocomposites: elaboration, structural characterization and properties”, J Polym Environ, Vol. 14, pp. 393-401 (2006).
[60] Someya Y, Kondo N, Teramoto N, Shibata M, “Studies of biodegradation of poly (butylene adipate-co-butylene terephtharate)/layered silicate nanocomposites”, Polym Prepr Jpn, Vol. 54, pp. 5362 (2005).
[61] Chivrac F, Pollet E, Averous L, “Nonisothermal crystallization behavior of poly(butylene adipate-co-terephthalate)/clay nanobiocomposites”, J Polym Sci Polym Phys, Vol. 45, pp. 1503-1510 (2007).
[62] Lim ST, Hyun YH, Choi HJ, Jhon MS, “Synthetic biodegradable aliphatic polyester/montmorillonite nanocomposites”, Chem Mater, Vol. 14, pp. 1839-1844 (2002).
[63] Bhattacharya A, Ray P, Polymer Grafting and Crosslinking, John Wiley & Sons, Inc., New Jersey (2009).
[64] Misra M, Desai SM, Mohanty AK, Drzal LT, “Novel solvent-free method for functionalization of polyhydroxyalkanoates: synthesis and characterizations”, Proceedings of the 62nd annual technical conference of the society of plastics engineers, vol.2. Boca Raton (FL), USA, pp. 2442-2446 (2004).
[65] Champness PE, “Electron Diffraction in the Transmission Electron Microscope”, Garland Science (2001).
[66] Hubbard A, The Handbook of surface imaging and visualization, CRC Press (1995).
[67] 陳力俊,掃描式電子顯微鏡 , 科儀新知,第18期,93-107頁(1983)。
[68] Krzan A, Hemjinda S, Miertus S, Corti A, Chiellini E, “Standardization and certification in the area of environmentally degradable plastics”, Polym Degrad Stab, Vol. 91, pp. 2819-2833 (2006).
[69] Kim KJ, Doi Y, Abe H, “Effects of residual metal compounds and chain-end structure on thermal degradation of poly(3-hydroxybutyric acid)”, Polym Degrad Stab, Vol. 91, pp. 769-777 (2006).
[70] Bikiaris DN, Chrissafis K, Paraskevopoulos KM, Triantakyllidis KS, Antonakou EV, “Investigation of thermal degradation mechanism of an aliphatic polyester using pyrolysis-gas chromatography–mass spectrometry and a kinetic study of the effect of the amount of polymerisation catalyst”, Polym Degrad Stab, Vol. 92, pp. 525-536 (2007).
[71] Yu J, Plackett D, Chen LXL, “Kinetics and mechanism of the monomeric products from abiotic hydrolysis of poly[(R)-3-hydroxybutyrate] under acidic and alkaline conditions”, Polym Degrad Stab, Vol. 89, pp. 289-299 (2005).
[72] Jung JH, Ree M, Kim H, “Acid- and base- catalyzed hydrolyses of aliphatic polycarbonates and polyesters”, Catal. Today, Vol. 115, pp. 283-287 (2006).
[73] Scaffaro R, Tzankova Dintcheva N, La Mantia FP, “A new equipment to measure the combined effects of humidity, temperature, mechanical stress and UV exposure on the creep behaviour of polymers”, Polym Test, Vol. 27, pp. 49-54 (2008).
[74] Pelmont J, Biodegradations et metabolismes. Les bacteries pour les technologies de l’environnement. EDP Sciences, Les Ulis. (2005).
[75] Von Burkersroda F, Schedl L, Gopferich A, “Why degradable polymers undergo surface erosion or bulk erosion”, Biomaterials, Vol. 23, pp. 4221-4231 (2002).
[76] Pepic D, Zagar E, Zigon M, Krzan A, Kunaver M, Djonlagic J, “Synthesis and characterization of biodegradable aliphatic copolyesters with poly(ethylene oxide) soft segments”, Eur Polym J, Vol. 44, pp. 904-917 (2008).
[77] Hofrichter M, “Review: lignin conversion by manganese peroxidase”, Enzyme Microb Technol, Vol. 30, pp. 454-466 (2002).
[78] Muller RJ, Witt U, Rantze E, Deckwer WD, “Architecture of biodegradable copolyesters containing aromatic constituents”, Polym Degrad Stab, Vol. 59, pp. 203-208 (1998).
[79] Dommergues Y, Mangenot F, Ecologie Microbienne du Sol., Masson & Cie, Paris (1972).
[80] Jiang W, Chen SH, Chen Y, “Nanocomposites from phenolic resin and various organo-modified montmorillonites: Preparation and thermal stability”, J Appl Polym Sci, Vol. 102, pp. 5336-5343(2006).
[81] Someya Y, Kondo N, Shibata MJ, “Biodegradation of poly(butylene adipate-co-butylene terephthalate)/layered-silicate nanocomposites”, J Appl Polym Sci, Vol. 106, pp. 730-736 (2007).
[82] Calcagno CIW, Mariani CM, Teixeira SR, Mauler RS, “The effect of organic modifier of the clay on morphology and crystallization properties of PET nanocomposites”, Polymer, Vol. 48, pp. 966-974 (2007).
[83] Ou CF, Ho MT, Lin LR, “Synthesis and Characterization of Poly(ethylene terephthalate) Nanocomposites with Organoclay”, J Appl Polym Sci, Vol. 91, pp. 140-145 (2004).
[84] Shangguan YY, Wang YW, Wu Q, Chen GQ, “The mechanical properties and in vitro biodegradation and biocompatibility of UV-treated poly(3-hydroxybutyrate-co-3-hydroxyhexanoate)”, Biomaterials, Vol. 27, pp. 2349-2357 (2006).
[85] He H, Ma Y, Zhu J, Yuan P, Qing Y, “Organoclays prepared from montmorillonites with different cation exchange capacity and surfactant configuration”, Appl Clay Sci, Vol. 48, pp. 67-72 (2010).
[86] Mani R, Bhattacharya M, Tang J, “Functionalization of Polyesters with Maleic Anhydride by Reactive Extrusion”, J Polym Sci, Part A: Polym Chem, Vol. 37, pp. 1693-1702 (1999).
[87] Mohanty S, Nayak SK, “Aromatic-aliphatic poly(butylene adipate-coterephthalate) bionanocomposite: Influence of organic modification on structure and properties”, Polym Compos, Vol. 31 pp. 1194-1204 (2010).
[88] Kijchavengkul T, Auras R, Rubino M, Selke S, Ngouajio M, Fernandez RT, “Formulation selection of aliphatic aromatic biodegradable polyester film exposed to UV/solar radiation”, Polym Degrad Stab, Vol. 96, pp. 1919-1926 (2011).
[89] Eckel DF, Balogh MP, Fasulo PD, Rodgers WR, “Assessing organo-clay dispersion in polymer nanocomposites”, J Appl Polym Sci, Vol. 93, pp. 1110-1117 (2004).
[90] Choudalakis G, Gotsis AD, “Permeability of polymer/clay nanocomposites: A review”, Eur Polym J, Vol. 45, pp. 967-984 (2009).
[91] Gorrasi G, Tortora M, Vittoria V, Kaempfer D, Mulhaupt R, “Transport properties of organic vapors in nanocomposites of organophilic layered silicate and syndiotactic polypropylene”, Polymer, Vol. 44, pp. 3679-3685 (2003).

QR CODE