簡易檢索 / 詳目顯示

研究生: 方建平
Jian-Ping Fang
論文名稱: 在HEVC壓縮標準下一種適用於任意色彩濾波陣列視訊之調整式色彩4:2:2抽樣策略
Adjusted 4:2:2 Chroma Subsampling Strategy for Compressing Mosaic Videos with Arbitrary RGB Color Filter Arrays in HEVC
指導教授: 鍾國亮
Kuo-Liang Chung
口試委員: 貝蘇章
Soo-Chang Pei
蔡文祥
Wen-Hsiang Tsai
李祖添
Tsu-Tian Lee
林宗翰
Tzunghan Lin
學位類別: 碩士
Master
系所名稱: 電資學院 - 資訊工程系
Department of Computer Science and Information Engineering
論文出版年: 2014
畢業學年度: 102
語文別: 英文
論文頁數: 40
中文關鍵詞: 任意RGB色彩濾波陣列YUV 4:2:2彩度抽樣HEVC馬賽克影像
外文關鍵詞: HEVC, 4:2:2 chroma subsampling, Arbitrary RGB color filter arrays, mosaic videos.
相關次數: 點閱:328下載:9
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 為了減少成本,絕大多數的監視器與網路攝影機皆採用單一感光元件並搭載RGB色彩濾波陣列來捕捉影像。由於在捕捉的影像中,任一像素點上只會儲存RGB其中一種顏色的資訊,因此這類的影像通常被稱之為馬賽克影像。傳統上這些設備必須先經過解馬賽克與RGB至YUV色彩空間轉換後,再進行UV彩度抽樣與影像壓縮,來降低影像所需之儲存空間或傳輸頻寬。然而在傳統壓縮流程中,UV彩度抽樣總是在固定的影像位置進行彩度抽樣,完全沒有考慮到抽樣的結果對於重建馬賽克影像中RGB像素的影響性。在本篇論文中,我們提出了一種在HEVC壓縮標準下適用於任意色彩濾波陣列馬賽克視訊之調整式4:2:2彩度抽樣策略。透過觀察傳統彩度抽樣策略的缺陷與YUV至RGB色彩空間轉換的特性,在所提出的調整式4:2:2彩度抽樣策略中,我們納入UV彩度對於重建馬賽克影像中RGB像素的不同影響權重, 藉此有效動態地調整彩度抽樣位置。實驗結果顯示,相較於傳統的彩度抽樣策略,我們所提出之彩度抽樣策略確實能在不同bitrate區段上有效增進重建後馬賽克與解碼賽克視訊品質。


    To reduce the cost, most of surveillance cameras
    and web cameras are equipped with a single sensor covered by
    a red-green-blue (RGB) color filter array (CFA) for capturing
    only one RGB color component per pixel and hence produce
    so-called mosaic images. Conventionally, such cameras perform
    demosaicking, the transform from RGB domain to YUV domain,
    the chroma subsampling with 4:2:2 format, and the video coding
    to compress the captured mosaic images for storage saving and
    transmission over the Internet. However, in the conventional compression
    scheme, the commonly used 4:2:2 chroma subsampling
    strategies always sample U and V components from the fixed
    positions without considering the significance of the sampled U
    and V components for reconstructing R, G and B pixels, which
    results in the quality degradation of the reconstructed videos. In
    this thesis, to remedy this weakness, we propose an adjusted 4:2:2
    chroma subsampling strategy for compressing mosaic videos
    with arbitrary RGB-CFA structures in HEVC. The novelty of
    our work lies on that the positions of the sampled U and V
    components are dynamically adjusted according to the ordered
    significance of the U component for reconstructing B and G pixels
    as well as the V component for reconstructing R and G pixels.
    Experimental results demonstrate that the proposed adjusted
    4:2:2 chroma subsampling strategy outperforms, in terms of the
    quality of the reconstructed mosaic videos and the reconstructed
    full-color videos, the commonly used ones in the cases of middle
    and high bitrate and is competitive with the commonly used ones
    in the case of low bitrate.

    教授推薦書...... i 論文口試委員審定書...... ii 中文摘要...... iii Abstract...... iv 誌謝...... v Table of Contents...... vi List of Tables...... vii List of Figures...... viii 1 Introduction...... 1 2 Conventional Compression Scheme and Its 4:2:2 Chroma Subsampling Strategies...... 4 3 Proposed Adjusted 4:2:2 Chroma Subsampling Strategy for Compressing Mosaic Videos with Arbitrary RGB-CFAs...... 8 4 Experimental...... 14 5 Conclusion...... 38

    [1] B.E. Bayer, Color imaging array, U.S. Patent No. 3971065, 1976.
    [2] G. Bjontegaard, Calculation of average PSNR differences between RD curves, VECG-M33, ITU-T VECG meeting, Austin, Texas, 2–4, 2001.
    [3] B. Bross, W.J. Han, J.R. Ohm, G.J. Sullivan, and T. Wiegand, High efficiency video coding (HEVC) text specification draft 10, document JCTVC-L1003, 2013.
    [4] Draft ITU-T Recommendation and Final Draft International Standard of Joint Video Specification, document ITU-T Rec. H.264/ISO/IEC 14 496-10 AVC, Joint Video Team of ISO/IEC and ITU-T, 2003.
    [5] C. Doutre, P. Nasiopoulos, K.N. Plataniotis, H.264-based compression of Bayer pattern video sequences, IEEE Trans. Circuits and Systems for Video Technology, 18(6) (2008) 725–734.
    [6] C. Doutre, P. Nasiopoulos, Modified H.264 intra prediction for compression of video and images captured with a color filter array, in Proc. of IEEE International Conference on Image Processing, 2009, pp. 3401–3404.
    [7] S. Farsiu, M. Elad, P. Milanfar, Multiframe demosaicing and super-resolution of color images, IEEE Trans. Image Processing, 15(1) (2006) 141–159.
    [8] F. Gastaldi, C.C. Koh, M. Carli, A. Neri, S.K. Mitra, Compression of videos captured via Bayer patterned color filter arrays, in Proc. of 13th European Signal Processing Conference, 2005, pp. 983–992.
    [9] Generic coding of moving pictures and associated audio (MPEG-2), ISO/IEC 13818, 1995.
    [10] B.K. Gunturk, J. Glotzbach, Y. Altunbasak, R.W. Schaffer, R.M. Murserau, Demosaicking: color filter array interpolation, IEEE Signal Processing Magazine, 22(1) (2005) 44–54. 39
    [11] D. Heiss-Czedik, R. Huber-M‥ork, D. Soukup, H. Penz, B.L. Garc’ıa, Demosaicing algorithms for area- and line-scan cameras in print inspection, Journal of Visual Image Communicaiton and Representation, 20(6) (2009) 389–398.
    [12] B.K. Karch, R.C. Hardie, Adaptive wiener filter super-resolution of color filter array images, Optics Express, 21(16) (2013) 18820–18841.
    [13] Kodak True Color Image Collection [Online]. Available:
    http://r0k.us/graphics/kodak/.
    [14] R. Lukac, K. Martin, K.N. Plataniotis, Digital camera zooming based on unified CFA image processing steps, IEEE Trans. Consumer Electronics, 50(1) (2004) 15–24.
    [15] R. Lukac, K.N. Plataniotis, Universal demosaicking for imaging pipelines with an RGB color filter array, Pattern Recognition, 38(11) (2005) 2208–2212.
    [16] R. Lukac, K.N. Plataniotis, Color filter arrays: Design and performance analysis, IEEE Trans. Consumer Electronics, 51(4) (2005) 1260–1267.
    [17] S.C. Pei, I.K. Tam, Effective color interpolation in CCD color filter arrays using signal correlation, IEEE Trans. Circuits and Systems for Video Technology, 13(6) (2003) 503–513.
    [18] W.J. Yang, K.L. Chung, W.N. Yang, L.C. Lin, Universal chroma subsampling strategy for compressing mosaic video sequences with arbitrary RGB color filter arrays in H.264/AVC, IEEE Trans. Circuits and Systems for Video Technology, 23(4) (2013) 591–606.

    QR CODE