簡易檢索 / 詳目顯示

研究生: 宋柏奇
Po-chi Sung
論文名稱: 應用於無線個域網路之低複雜度符碼時間估測演算法設計
Low-Complexity Symbol Timing Estimation Algorithm for Wireless Personal Area Networks
指導教授: 王乃堅
Nai-Jian, Wang
口試委員: 曾德峰
Der-Feng, Tseng
白宏達
Hung-Ta Pai
學位類別: 碩士
Master
系所名稱: 電資學院 - 電機工程系
Department of Electrical Engineering
論文出版年: 2005
畢業學年度: 93
語文別: 中文
論文頁數: 42
中文關鍵詞: 延遲與相關演算法無線個域網路正交分頻多工符碼時間估測
外文關鍵詞: symbol timing estimation, WPAN, OFDM, delay and correlate algorithm
相關次數: 點閱:185下載:1
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 目前正交分頻多工技術已被廣泛的應用在多種不同的通訊系統上,以無線網路為例,藉由此技術的保護區間訊號可以有效降低多路徑通道對於系統效能的影響。雖然正交分頻多工技術非常適合運用在無線網路上,不過首先便是要能克服符碼時間偏移的問題。由於符碼時間偏移不僅會破壞系統子載波間的正交性,不當的符碼時間估測值亦會影響接收端的DFT運算,因而引起嚴重的位元錯誤率效能下降。所以本論主要研究應用於無線網路架構的符碼時間估測演算法-延遲與相關演算法,並進一步簡化其架構。由於簡化後的符碼時間估測演算法有較低的運算量,因此適合運用於低功率的無線個域網路IEEE P802.15上。


    Nowadays, the OFDM system is widely used in different communication systems. For example, wireless network can abate the multipath effect by using guard interval signal in OFDM system. Even though OFDM is suitable for being applied in wireless network, we have to overcome the problem of symbol timing offset. Because symbol timing offset not only ruins the orthogonality among the subcarriers, but also affects the result of DFT computation in receiver. This thesis is to study the delay and correlate algorithm which is the symbol timing estimation algorithm in wireless network. Based on the algorithm and then to simplify its processing, the simplified structure can reduce the computation in symbol timing estimation and good for mobile devices. Finally, we make use of this merit being applied to the IEEE P802.15 system that emphasized the lower power consumption.

    第一章 簡介 1.1 研究動機 1.2 符碼時間估測對於系統效能的影響 1.3 無線個域網路簡介 1.4 各章摘要 第二章 符碼時間估測 2.1 正交分頻多工符碼時間估測 2.2 延遲與相關演算法 第三章 符碼時間估測演算法簡化 3.1 延遲與相關演算法簡化 第四章 模擬結果與分析 第五章 結論與未來研究方向 參考文獻

    [1] Pandharipande, A., “Principles of OFDM,” IEEE Potentials, Volume 21, Issue 2 , 2002.
    [2] Schmidl, T.M.; Cox, D.C, “Robust frequency and time synchronization for OFDM,” IEEE Transactions on Communications , Volume 45, Issue 12, 1997.
    [3] Luise, M.; Reggiannini, R., “Carrier frequency acquisition and tracking for OFDM systems,” IEEE Transactions on Communications, Volume 44, Issue 11, 1996.
    [4] Juha Heiskala, John Terry, OFDM Wireless LANs: A Theoretical and Practical Guide, SAMS, 2002.
    [5] Czylwik, A., “Synchronization for single carrier modulation with frequency domain equalization,” IEEE Conference on Vehicular Technology, Volume 3, 1998.
    [6] Anuj Batra et al.; Texas Instruments et al., “Multi-band OFDM Physical Layer Proposal for IEEE802.15 Task Group 3a,” 2004.
    [7] van de Beek, J.J.; Sandell, M.; Borjesson, P.O., “ML estimation of time and frequency offset in OFDM system,” IEEE Transactions on Signal Processing, Volume 45, Issue 7, 1997.
    [8] van de Beek, J.J.; Sandell, M.; Borjesson, P.O., “Low-complex frame synchro-
    nization in OFDM system,” IEEE International Conference on Universal Personal Communications, 1995.
    [9] Schmidl, T.M.; Cox, D.C, “Low-overhead, low-complexity [burst] synchro-
    nization for OFDM,” IEEE International Conference on Communications , Volume 3, 1996.
    [10] T. Rappaport, Wireless Communications: Principles and Practice 2/e, Prentice Hill, 2002.
    [11] Farrow, C.W., “A continuously variable digital delay element,” 1988., IEEE International Symposium on Circuits and Systems, Volume 3, 1988.
    [12] Meng-Han Hsieh; Che-Ho Wei, “A low-complexity frame synchronization and frequency offset compensation scheme for OFDM systems over fading channels,” IEEE Transactions on Vehicular Technology, Volume 48, Issue 5, 1999.

    無法下載圖示
    全文公開日期 本全文未授權公開 (校外網路)
    全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
    QR CODE