簡易檢索 / 詳目顯示

研究生: 謝佩臻
Pei-Zhen Xie
論文名稱: 節理岩體中傾角變化對馬蹄形隧道開挖之力學行為探討
The study of variation of joint dip angle to mechanical behaviors after horseshoe shape tunnel excavation
指導教授: 陳志南
Chee-Nan Chen
口試委員: 彭桓沂
林志森
陳堯中
學位類別: 碩士
Master
系所名稱: 工程學院 - 營建工程系
Department of Civil and Construction Engineering
論文出版年: 2018
畢業學年度: 106
語文別: 中文
論文頁數: 171
中文關鍵詞: 隧道節理傾角
外文關鍵詞: tunnel, joint, dip angle
相關次數: 點閱:240下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究利用UDEC軟體探討馬蹄形隧道於無節理、單一節理與兩條正交節理岩體中開挖之應力與變形影響,岩體是否發生塑性破壞並計算安全係數以評估岩體之安全性。首先分析馬蹄形隧道開挖於無節理岩體於四種不同覆岩深度(K=1)與四種不同初始應力(K=0.5、1、2、3)之情況。接著討論傾角變化對於單一節理通過右角隅岩盤之情況(K=1),以及兩條正交節理岩體於四種不同初始應力(K=0.5、1、2)之情況,最後將無節理、單一節理、兩條正交節理岩體進行綜合對比。
    本研究結果顯示當單一節理通過角隅,節理角度於β=15~75˚之間,軸差應力較大且有塑性區產生。兩條正交節理岩體在應力、位移、塑性區分佈情況,大致為單一節理β=45˚與135˚趨勢的疊加。在本研究的分析範圍內,產生最多塑性破壞為兩條節理分佈且K=3的情況。


    In this study, UDEC software is used to investigate the effects of stress and deformation of horseshoe shape tunnel on unjointed, single joints and two orthogonal jointed rock masses. Whether the rock mass is plastically damaged and the safety factor is calculated to evaluate the safety of the rock mass. First, the horseshoe shape tunnel excavation was carried out on four different overburden depths (K=1) and four different initial stresses (K=0.5, 1, 2, 3). Next, discussing the case where the variation of joint dip angle is for a single joint through the right angle shale disk (K=1), and the two orthogonal jointed rock mass are at four different initial stresses. Finally, compare with orthogonal jointed rock mass with no joints and a single section.
    The results of this study show that when a single joint passes through the corner, the joint angle between β=15~75˚ the axial stress is large and the plastic zone is produced. The distribution of stress, displacement and plastic zone of two orthogonal jointed rock masses is roughly the superposition of the single joint β=45 ̊ and 135 ̊ trends. Within the scope of the analysis of this study, the most plastic failure was caused by two joint distributions and K=3.

    論文摘要 Abstract 誌謝 目錄 圖目錄 表目錄 第一章 緒論 1.1 前言 1.2 研究動機與目的 1.3 研究方法與流程 1.4 論文內容 第二章 文獻回顧 2.1 岩石材料之力學行為 2.1.1 完整岩體之力學行為 2.1.2 節理岩體之力學行為 2.1.3 岩體現地應力 2.2 隧道開挖於岩盤中之力學行為 2.2.1 圓形隧道於良好岩盤中開挖之應力分佈 2.2.2 馬蹄形隧道於良好岩盤中開挖之應力分佈 第三章 分析方法說明 3.1 UDEC程式的發展與理論背景 3.1.1 歷史背景 3.1.2 UDEC程式運算原理 3.2 UDEC之行為模式 3.2.1 塊體之組合律模式 3.2.2 岩石節理之組合律 3.3 UDEC 基本術語定義 3.4 分析流程及基本輸入指令簡介 3.4.1 分析架構及輸入指令說明 3.4.2 實際分析步驟 3.5 數值分析模式建置 3.5.1 數值分析之邊界範圍與束制 3.5.2 數值模擬之岩體與節理參數選定 3.6 岩盤開挖之測點配置 第四章 馬蹄形隧道於無節理、單一節理與兩條正交節理岩盤中開挖之力學行為 4.1 無節理岩盤中開挖之力學行為 4.1.1 無節理岩體之力學行為分析(H=600 m,K=1) 4.1.2 四種覆岩深度之完整岩體之力學行為比較 (H=300 m、400 m、500 m、600 m,K=1) 4.1.3 四種初始應力之完整岩體之力學行為分析 (H=600 m,K=0.5、1、2、3) 4.2 單一節理岩盤中開挖之力學行為 (H=600 M,K=1) 4.2.1 單一節理通過隧道角隅處之力學行為分析 (β=45°,K=1) 4.2.2 五種單一節理通過隧道角隅處岩體之力學行為分析 (β=15~75°,K=1) 4.2.3 五種單一節理通過角隅且穿過隧道岩體之力學行為分析 (β=105~165°,K=1) 4.2.4 兩種單一節理通過角隅且與開挖面重疊岩體之力學行為分析 (β=0、90°,K=1) 4.3 兩條正交節理岩盤中開挖之力學行為 (Β=45°、135°,H=600 m) 4.3.1 完整岩體、傾斜單一節理與兩條正交節理岩體之力學行為分析 (K=1) 4.3.2 完整岩體、傾斜單一節理與兩條正交節理岩盤之力學行為比較 (K=0.5、1、2、3) 5.1 結論 5.2 建議 參考文獻

    1.Andrea Lisjak a, Daniel Figi, Giovanni Grasselli, “Fracture development around deep underground excavations: Insightsfrom FDEM modelling,” Journal of Rock Mechanics and Geotechnical Engineering, pp.493-505, (2014)
    2.Bandis, S., Lumsden, A.C. and Barton, N.R., “Foundamentals of Rock Joints Deformation.” International Journal of Rock Mechanics & Mining Sciences & Geomechanics Abstract, 20 (6), pp. 249-268, (1983).
    3.Bandis, S., Lumsden, A.C., Barton, N., “Experimental studies of scale effects on the shear behavior of rock joints,” Norwegian Geotechnical Institute, Publication No.:162, Oslo, Norway, pp. 1-21, (1986).
    4.Goodman, R. E. “Introduction to Rock Mechanics,” 2nd Ed., John Wiley&Sons, New York (1989).
    5.Hoek,E., and Brown, E.T., “Underground Excavations in Rock,” The Institution of Mining and Metallurgy, London. (1980a)
    6.Hoek,E., and Brown, E.T., “Empirical Strength Criterion for Rock Masses,” Journal of the Geotechnical Engineering Division, pp.1013-1033,(1980b)
    7.Hoek. Martin“Fracture initiation and propagation in intact rock e A review,” Journal of Rock Mechanics and Geotechnical Engineering, pp. 287-300, (2014)
    8.Itasca Consultin Group. UDEC (Universal Distinct Element Code) Version 4.0. Minneapolis, Minnesota (2004).
    9.Jaeger, J.C., “Shear failure of anisotropic rock,” Geo. Mag., 97, pp. 65-72, (1960).
    10.Kulitilake, P. H., Ucpirti, S. W., Wang, H. S., Radberg, G. and Stephansson, O., “Use of the Distinct Element Method to Perform Stress Analysis in Rock with Non-persistent Joints and to Study the Effect of Joint Geometry Parameters on the Strength and Deformability of Rock Masses,” Rock Mechanics and Rock Engineering 25(4), pp. 253-274 (1992).
    11.Lama, R.D. and Vutukuri V.S., “Hand Book on Mechanical Properties of Rock.” Trans Tech Publications, Germany (1978)
    12.Majid Noorian Bidgoli, Zhihong Zhao, Lanru Jing, “Numerical evaluation of strength and deformability of fractured rocks,” Journal of Rock Mechanics and Geotechnical Engineering, pp.419-430, (2013)
    13.Nick Barton, Baotang Shen, “Risk of shear failure and extensional failure around over-stressed excavations in brittle rock,” Journal of Rock Mechanics and Geotechnical Engineering, pp.210-225, (2017)
    14.SKB, “Numerical modelling of fracture displacements due to thermal load from a KBS-3 repository.” TR-02-08 (2002).
    15.台灣電力公司,「我國用過核子燃料最終處置初步技術可行性評估報告」,(2009)。
    16.台灣電力公司,「用過核子燃料最終處置計畫潛在處置母岩特性調查與評估階段-潛在母岩特性調查(104~107年度計畫)開案簡報」,(2015)。
    17.李宏輝,「砂岩力學行為之微觀機制-以個別元素法探討」,博士論文,國立臺灣大學土木工程研究所,台北,(2008)。
    18.邱繼正,「不同初始應力作用對馬蹄形隧道於無節理與單一節理岩體中開挖之力學行為探討」,碩士論文,國立台灣科技大學營建工程研究所,臺北,(2017)。
    19.陳思宇,「圓形隧道於單一節理岩體中開挖之力學行為探討」,碩士論文,國立台灣科技大學營建工程研究所,臺北,(2015)。
    20.連于榛,「不同節理分佈與不同初始應力作用對馬蹄形隧道開挖之應力與應變探討」,碩士論文,國立台灣科技大學營建工程研究所,臺北,(2016)。
    21.楊長義、黃燦輝,「人工規則節理岩體單軸壓力強度之研究」,中國土木水利工程學刊,第七卷,第四期,中國土木水利工程學會,(1995)。
    22.鄺寶山、王文禮,「FLAC程式於隧道工程之實例分析」,地工技術雜誌,第41期,第50-61頁,(1993)。
    23.龔台慶,「節理傾角、地下水及開挖工法對隧道開挖變形行為影響之探討」,碩士論文,國立台灣科技大學營建工程研究所,臺北,(2001)。

    無法下載圖示 全文公開日期 2023/08/26 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)
    全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
    QR CODE