簡易檢索 / 詳目顯示

研究生: 羅志文
Zhi-wen Lo
論文名稱: 聯合估測二維方位角與載波頻率及時間延遲之快速演算法
Fast Algorithm for Joint 2D DOAs and Carrier Frequency/Time Delay Estimation
指導教授: 方文賢
Wen-Hsien Fang
口試委員: 洪賢昇
none
張順雄
none
賴坤財
none
學位類別: 碩士
Master
系所名稱: 電資學院 - 電子工程系
Department of Electronic and Computer Engineering
論文出版年: 2006
畢業學年度: 94
語文別: 中文
論文頁數: 68
中文關鍵詞: 關鍵字: 二維方位角載波頻率時間延遲正交投影矩陣二維Unitary-ESPRIT一維Unitary-ESPRIT參數估測
外文關鍵詞: Keywords: 2D DOA, carrier frequencies, time delay, projection matrices, 2D Unitary-ESPRIT, 1D Unitary-ESPRIT, parameter estimation
相關次數: 點閱:201下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 摘要
    在本篇論文中, 我們提出了一種可同時精確估測二維方位角與載波
    頻率之演算法, 此演算法主要架構是運用正交投影矩陣, 將接收訊號拆解成二
    維方位角所生成之訊號子空間與載波頻率所生成之訊號子空間, 再運用二維
    Unitary-ESPRIT 及一維Unitary-ESPRIT 演算法將接收訊號中的參數估測出
    來; 之後, 我們更將上述演算法之架構作進一步延伸, 將接收訊號分解成三個
    一維的訊號子空間, 再利用一維Unitary-ESPRIT 估測出精準的方位角與載波
    頻率以降低整體複雜度。另一方面,我們也可利用相同的架構來估測二維方位
    角與時間延遲之接收訊號。最後, 在本篇論文模擬結果中, 可以顯示我們所提
    出的演算法, 可同時準確的估測接收訊號之二維方位角與載波頻率或二維方
    向角與時間延遲等相關參數。
    關鍵字: 二維方位角, 載波頻率, 時間延遲, 正交投影矩陣, 二維Unitary-
    ESPRIT, 一維Unitary-ESPRIT , 參數估測。
    i


    ABSTRACT
    In this thesis, we propose low-complexity, yet high accuracy algorithms to
    jointly estimate two-dimensional directions of arrival (DOAs) and carrier frequency
    using a uniform rectangular array. To achieve this, we utilize the (2-D) unitary
    Estimation of Signal Parameters via Rotational Invariance Techniques (ESPRIT)
    and one-dimensional (1-D) unitary ESPRIT to estimate the 2-D DOAs and frequencies
    of the incoming rays, respectively. Also, to enhance the performance, a
    signal partitioning process, implemented by a set of projection matrices, is invoked
    in between the unitary ESPRIT algorithms. To further reduce the computation,
    we also decompose the 2-D DOA estimation process, so that only 1-D unitary
    ESPRIT algorithm are required. Similar techniques are also employed for joint
    2-D DOA and delay estimation. Conducted simulations show that the new algorithms
    can provide satisfactory performance compared with previous works, but
    with drastically reduced computational complexity.
    Keywords: 2D DOA, carrier frequencies, time delay, projection matrices, 2D
    Unitary-ESPRIT, 1D Unitary-ESPRIT, parameter estimation

    目錄 第一章緒論1 1.1 介紹. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 1.2 研究動機. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2 1.3 內容章節概述. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3 第二章一維與二維訊號模型與入射方位角之估測演算法之介紹4 2.1 訊號模型. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4 2.1.1 一維信號模型. . . . . . . . . . . . . . . . . . . . . . . . . 5 2.1.2 二維訊號模型. . . . . . . . . . . . . . . . . . . . . . . . . 7 iii 2.2 ESPRIT型式之入射方位角估測演算法. . . . . . . . . . . . . . . 8 2.2.1 ESPRIT基本型式. . . . . . . . . . . . . . . . . . . . . . . 9 2.2.2 Unitary-ESPRIT演算法. . . . . . . . . . . . . . . . . . . . 13 2.2.3 二維Unitary ESPRIT 演算法. . . . . . . . . . . . . . . . 17 2.2.4 三維Unitary-ESPRIT 演算法. . . . . . . . . . . . . . . . 20 2.3 結語. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 第三章二維方位角及載波頻率之聯合估測法29 3.1 訊號模型. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 3.2 估測二維方位角與載波頻率基於結合二維Unitary-ESPRIT 及 一維Unitary-ESPRIT 架構之演算法. . . . . . . . . . . . . . . . 31 3.3 估測二維方位角與載波頻率基於一維Unitary-ESPRIT 架構之 演算法. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38 3.4 模擬結果與討論. . . . . . . . . . . . . . . . . . . . . . . . . . . . 43 iv 3.5 結語. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50 第四章二維方位角及時間延遲之聯合估測法51 4.1 訊號模型. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52 4.2 估測二維方位角與時間延遲基於二維Unitary-ESPRIT 及一維 Unitary-ESPRIT 架構之演算法. . . . . . . . . . . . . . . . . . . . 53 4.3 估測二維方位角與時間延遲基於一維Unitary-ESPRIT 架構之演 算法. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56 4.4 模擬結果與討論. . . . . . . . . . . . . . . . . . . . . . . . . . . . 58 4.5 結語. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63 第五章結論與未來展望64

    [1] T. S. Rappaport, Wireless Communications. Prentice Hall PTR, 1996.
    [2] Simon Haykin, Adaptive Filter Theory, 4e. Prentice-Hall, 2002.
    [3] H. L. Van Trees,Optimun Array Processing. Wiley-Interscience, 2002.
    [4] R. Schmidt,“Multiple emitter location and signql parameter estimation,”
    IEEE Transactions on Antennas and Propagation, Vol. AP-34, NO.3,pp 276-
    280 March 1986
    [5] R. Roy and T. Kailath, “ESPRIT-estimation of signal parameters via rotational
    invariance techniques,” IEEE Transcation on Acoustics. Speech. and
    Signal Processing, pp. 984-995, Vol 37. NO 7. July 1989
    [6] M. Haardt and J.A. Nossek,“Unitary ESPRIT: how to obtain increased estimation
    accuracy with a reduced computational burden,” IEEE Transcation
    on Signal Processing, Vol. 43,NO.5,pp 1232 - 1242 , May 1995,
    [7] M. D. Zoltowski, M. Haardt and C.P. Mathews, “Closed-form 2-D angle estimation
    with rectangular arrays in element space or beamspace via unitary
    ESPRIT,” IEEE Transaction on Signal Processing, Vol. 44, NO. 2,pp 316 -
    328, Feb. 1996
    [8] M. Haardt and J.A. Nossek, “Simultaneous Schur decomposition of several
    nonsymmetric matrices to achieve automatic pairing in multidimensional harmonic
    retrieval problems,”IEEE Transaction on Signal Processing, Vol. 46,
    NO. 1,pp Jan. 1998.
    [9] G.H. Gloub and C.F. Van Loan, Matrix Computations, 3rd ed. Johns Hopkins
    University Press, 1996
    [10] P. Strobach, “Total least squares phased averaging and 3-D ESPRIT for joint
    azimuth-elevation-carrier estimation,” IEEE Transactions on Signal Processing,
    Vol. 49, NO. 1,pp 54 - 62 Jan. 2001.
    66
    [11] M. Haardt and J. A. Nossek, “3-D unitary ESPRIT for joint 2-D angle and
    carrier estimation”Acoustics, Speech, and Signal Processing, Vol 1,pp 21-24,
    Apr. 1997.
    [12] C. Qi, Y. Wang, Y. Zhang and H. Chen. “A space-time processing approach
    to joint estimation of signal frequency and 2-D direction of arrival” in proc.
    Antennas and Propagation Symposium,Vol 2B,pp 370 - 373, July 2005.
    [13] T. S. Rappaport, J. H. Reed and B. D. Woerner, “Position location using
    wireless communications on highways of the future,”IEEE Commun. Mag,
    Oct. 1996.
    [14] M. Wax, T. J. Shan and T. Kailath, “ Spatio-temporal spectral analysis by
    eigenstructure methods,” IEEE Trans on ASSP,Vol. 32,pp. 817-827, Apr.
    1984.
    [15] Y H. Chen and C. H. Chen, “Direction-of-arrival and frequency estimation
    for narrowband sources using two single rotation invariance algorithms with
    the marked subspace,” IEE Proceedings-F,Vol. 139,pp. 297-300, Apr. 1992.
    [16] A. N. Lemma, A. J. Veen and E. F. Deprettere, “Analysis of joint anglefrequency
    estimation using ESPRIT,” IEEE Trans. Signal Processing,Vol.
    51,pp. 1264-1283, May. 2003.
    [17] M. A. Zatman and H. J. Strangeways, “An efficient joint direction of arrival
    and frequency ML estimator,” Antennas and Propagation Society International
    Symposium,Vol 1. ,pp 431-434 June. 1995.
    [18] A. L. Swindlehurst, “Time delay and spatial signature estimation using known
    asynchronous signals,” IEEE Trans. Signal Processing,Vol. 46, pp. 449-461,
    Feb. 1998.
    [19] A. Jakobsson, A. L. Swindlehurst and P. Stoica, “Subspace-based estimation
    of time delays and doppler shifts,” IEEE Trans. Signal Processing,Vol. 46,pp.
    2472-2483, Sept. 1998.
    [20] A. L. Swindlehurst and J. H. Gunther, “Methods for blind equalization and
    resolution of overlapping echos of unknown shape,” IEEE Trans. Signal Processing,
    Vol. 47,pp. 1245-1254, May. 1999.
    [21] M. P. Clark and L. L. Scharf, “Two-dimensional modal analysis based on
    maximum likelihood,” IEEE Trans. Signal Processing,Vol. 42,pp.1443-1452,
    June. 1994.
    [22] EIA/TIA Interim Stand. IS-136, Dec. 1994.
    [23] “European telecommunication standard institute (ETSI),” Europeon
    Telecomm. Stand. Inst., rec. ETSI/GSM 05.02, 1990.
    67
    [24] V. M. Baronkin, Y.V. Zakharov and T. C. Tozer, “Cramer-Rao lower bound
    for frequency estimation in multipath Rayleigh fading channels” Acoustics,
    Speech, and Signal Processing,Vol. 4,pp 2557-2560, May. 2001.
    [25] S. Chaudhuri and S. Chatterjee, “Performance analysis of total least squares
    methods in three-dimensional motion estimation” IEEE Robotics and Automation
    Society,Vol. 7,pp 707-714, Oct. 1991.
    [26] M. J. D. Rendas and J. M. F. Moura, “Cramer-Rao bound for location
    systems in multipath environments” IEEE Transactions on Signal Processing,
    Vol. 39,pp 2593-2610, Dec. 1991.
    [27] C. Joseph and S. Theodore, Smart Antennas for Wireless Communication
    Prentice Hall, 1999.
    [28] J.-D. Lin, W.-H. Fang, Y.-Y. Wang, and J.-T. Chen, “FSF MUSIC for joint
    DOA and frequency estimation and its performance analysis,” accepted by
    IEEE Trans. Signal Processing.
    [29] C.-H. Lin, K.-H.Wu, J.-D. Lin, and W.-H. Fang, “A one-dimensional ESPRIT
    based algorithm for joint azimuth, elevation and frequency estimation,” in
    Proc. IEEE Int’l Symposium Antennas and Propagations, 2006.
    [30] G.G. Raleigh and T. Boros, “Joint space-time parameter estimation for wireless
    communication channels” IEEE Trans. Signal Processing,Vol. 46,pp 1333-
    1343, May. 1998
    [31] R. A. Horn and C. R. Johnson, Matrix Analysis. Cambridge, 1985.
    [32] J.-D. Lin, W.-H. Fang and J.-T. Chen, “Constrained TST MUSIC for joint
    spatial-temporal channel parameter estimation” Acoustics, Speech, and Signal
    Processing,Vol. 5,pp 193-196, 2003.
    68

    QR CODE