簡易檢索 / 詳目顯示

研究生: 周炳伸
Ping-Shen Chou
論文名稱: 水解能量於可水解鋁酸鋰基板平坦化製程之研究
Research on Hybrid-Energy Assisted Planarization for Polishing of Hydrolysis LAO Substrates
指導教授: 陳炤彰
Chao-Chang A. Chen
口試委員: 林榮慶
Zone-Ching Lin
鄭裕隆
Lung-Yu Jeng
學位類別: 碩士
Master
系所名稱: 工程學院 - 機械工程系
Department of Mechanical Engineering
論文出版年: 2012
畢業學年度: 100
語文別: 中文
論文頁數: 192
中文關鍵詞: 次表面破壞可水解基板複合能量化學機械拋光鋁酸鋰基板
外文關鍵詞: Hybrid-energy assisted chemical mechanical plana, Hydrolysis wafer, Sub-surface damage, lithium aluminate wafer
相關次數: 點閱:191下載:10
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

化學機械平坦化(Chemical Mechanical Polishing, CMP)因能夠快速移除材料且可達全面平坦化,故常用於半導體製程,而於LED基板產業,因使用與氮化鎵(GaN)晶格匹配的藍寶石或碳化矽基板,目前多以磨料與基板之間由作用力促進化學反應的機械化學拋光(Machano-Chemical Polishing, MCP)為主,因此透過外加能量促使硬脆材料基板之反應層要求也成為平坦化技術發展之趨勢。本研究主要為建立一種以研磨液溫度控制複合水解能量輔助化學機械平坦化(Hybrid-energy Assisted Chemical Mechanical Planarization, HACMP)之系統用以達到快速移除及表面全平坦化,並以可水解材料鋁酸鋰(LiAlO2, LAO)基板進行製程研發。本研究同時探討鋁酸鋰基板於拋光前之次表面破壞程度,確保所需移除之深度,並觀察水解現象在表面之影響。首先以無磨料純水溶液進行純水解之移除方法,再使用目前硬脆材料專用之兩款研磨液作為對照,最後以含水量之差異進行複合能量於鋁酸鋰基板拋光之效果的影響。於對照實驗時,進行研磨液升溫80°C之HACMP移除率上升22%,而在添加含水量50%之研磨液升溫80°C之HACMP可將稀釋磨料濃度之研磨液移除率上升29%,並且表面粗糙度更加改善,研磨液使用量將可減少25%。本研究相關成果可作為對於鋁酸鋰基板平坦化製程之研磨液調配依據,以及日後於LED基板產業應用鋁酸鋰基板製程時所需技術發展參考。


Chemical mechanical planarization (CMP) has become a popular technology in semiconductor manufacturing process. Substrate of light emitted diode (LED) are usually planarized by the Machano-Chemical Polishing (MCP) proceed due to the solid-phase chemical passivation between substrate material and abrasive grits. Since of the current low efficiency, thus this study is to develop a hybrid energy mechanism to assist in generating hydrolysis reacted layer on lithium aluminate (LAO) substrates. This Hybrid-Energy assisted Chemical Mechanical Planarization (HACMP) process achieves higher material removal rate and global planarization by such hydrolysis reaction and abrasive processing. Furthermore, the depth of sub-surface damage layer of LAO substrate before and after polishing process. Experimental results shows that the slurry with DI-water (DIW) to proceed the HACMP and achieve MRR increasing about 22% under the work temperature 80°C. The surface roughness is reduces as 20% and MRR can increased as 29% with adding 50% water concentration into slurry in the HACMP process. Thus, slurry comsumption can reduce upto 25% compare with the conventional polishing process. Results can be applied to further slurry analysis for LAO substrate and process optimization, especially for the LED substrate demands in the near future.

摘要 I Abstract II 誌謝 III 目錄 IV 圖目錄 IX 表目錄 XVI 符號表 XVIII 第一章 緒論 1 1.1研究背景 1 1.2 研究目的與方法 5 1.3 論文架構 6 第二章 文獻回顧 9 2.1 鋁酸鋰(LiAlO2)基板及平坦化方法 10 2.2 化學機械平坦化(CMP) 20 2.2.1 化學機械平坦化 20 2.2.2 拋光墊對CMP之影響 21 2.2.3 研磨液對CMP之影響 23 2.3 輔助方法用於化學機械平坦化 34 2.4 基板次表面裂縫及聚焦離子束(FIB)分析基板性質 38 第三章 複合水解能量輔助化學機械平坦化原理介紹 41 3.1 亨利定律(Henry’s Law) 41 3.1.1 亨利定律公式及常數 42 3.1.2 亨利常數與溫度之關係 43 3.2 鋁酸鋰之水解現象 44 3.3 輔助方法對於鋁酸鋰之反應 46 3.4 平坦化技術材料移除機制與製程模型建立 47 3.4.1 化學機械研磨材料移除機制與製程模型建立 49 3.4.2 水解能量輔助機械研磨材料移除機制與製程模型建立 53 3.4.3 平坦化技術材料移除機制與製程模型建立小結 57 3.5 化學機械研磨移除機制以製程模型建立Preston常數解析 57 3.5.1 Preston常數各項影響因子定義 59 3.5.2 製程設備影響因子及敏感度 60 3.5.3 基板材料影響因子及敏感度 61 3.5.4 研磨墊影響因子及敏感度 61 3.5.5 研磨液影響因子及敏感度 62 3.5.6 磨料、研磨液黏度因子及敏感度 62 3.5.7 製程模型建立Preston常數解析小結 63 第四章 實驗設備與規劃 65 4.1 HACMP系統 65 4.2 實驗設備 66 4.2.1 PM5精密拋光機 66 4.2.2 M15-P 精密研磨拋光機 66 4.3 實驗耗材 67 4.3.1 拋光墊 67 4.3.2 研磨液 68 4.3.3 鑽石修整器 70 4.3.4 鋁酸鋰晶圓(LiAlO2 wafer, LAO wafer) 71 4.4 量測設備 73 4.4.1 CCI-Lite表面干涉儀 73 4.4.2 精密電子天秤 74 4.4.3 掃描式電子顯微鏡 75 4.4.4 雙束型聚焦離子束 76 4.4.5 原子力顯微鏡 77 4.4.6 雷射粒徑分析儀 78 4.4.7 紅外線熱像測溫儀 79 4.5 實驗規劃 81 4.5.1 製程模型計算建立實驗 81 4.5.2 鋁酸鋰基板水解性質實驗 84 4.5.3 鋁酸鋰基板HACMP實驗 85 第五章 結果與討論 87 5.1 Preston常數製程模型建立 87 5.1.1 製程耗材各項輸入值量測 87 5.1.2 製程設備影響之修正係數計算 89 5.1.3 基板材料影響因子及敏感度計算 90 5.1.4 研磨墊影響因子及敏感度計算 91 5.1.5 研磨液影響因子及敏感度計算 92 5.1.6 磨料、研磨液黏度因子及敏感度 93 5.1.7 實驗驗證Preston常數製程模型建立小結 94 5.2 鋁酸鋰基板水解性質實驗 94 5.2.1 鋁酸鋰基板於水中之水解現象 95 5.2.2 鋁酸鋰基板次表面分析 103 5.2.3 鋁酸鋰基板水解生成物分析 108 5.3 鋁酸鋰基板HACMP實驗 112 5.3.1 無磨料水解層移除實驗 112 5.3.2 HACMP實驗 115 5.3.3 HACMP含水量影響實驗 119 5.3.4 HACMP製程後基板大範圍表面品質分析 132 5.4 綜合結果討論 137 第六章 結論與建議 140 6.1 結論 140 6.2 建議 141 參考文獻 142 附錄 149 附錄A 雙面研磨之鋁酸鋰基板綠光干涉儀量測資料 149 附錄B 研磨液SWIZ SN7100粒徑量測資料 151 附錄C 研磨液Fujimi COMPOL80粒徑量測資料 152 附錄D 各製程光學顯微鏡觀察之表面形貌 153 附錄E 各製程綠光干涉儀之表面粗糙度 157 作者簡介 171

1. Isamu, A., “Key invention in the history of nitride-based blue LED and LD”, Journal of Crystal Gtowth, 300, pp.2-10, 2007.
2. Reed, M. D., Kryliouk, O. M., Mastro, M. A., Anderson, T. J., “Growth and characterization of single-crystalline gallium nitride using (100) LiAlO2 substrates”, Journal of Crystal Growth, 274, pp.14-20, 2005.
3. Ploog, K. H., Fritz, H., Friedhelm, B., (Al, Ga, In)N heterostructures grown along polar and non-polar directions by plasma-assisted molecular beam exitaxy, Paul Drude Institut Fur Festkorperelektronik, Berlin, 2001.
4. 謝啟祥, 電場輔助化學機械拋光製程於銅膜平坦化之研究, 機械工程學系碩士論文, 國立台灣科技大學, 2011.
5. 枋明輝, 林彥德, 鋁酸鋰基板拋光製程分析, 47286654-9702, 國立台灣科技大學, 2008.
6. Parshuram, B. Z., Ashok, K., Sikder, A. K., “Chemical mechanical planarization for microelectronics applications”, Materials Science and Engineering, R, 45, pp.89-220, 2004.
7. Zedang, Z., Weili, L., Zhitang, S., Xiaokai, H., “Two- step chemical mechanical polishing of sapphire substrate”, Journal of the Electrochemical Society, 157, 6, H688-H691, 2010.
8. Umeno, M., Takashi, E., Hiroyasu, I., “GaN-based optoelectronic devies on sapphire and Si substrate”, Materials Science in Semiconductor Processing, 4, pp.459-466, 2001.
9. Melton, W. A., Jacques, I. P., “GaN growth on sapphire”, Journal of Crystal Growth, 178, pp.168-173, 1997.
10. Arnoud, P. K., Funter, W. S., Fritz, A., “Crystallography of potassium aluminate K2O•Al2O3”, Journal of Alloys and Compounds, 314, pp.147-153, 2001.
11. Kinoshita, K., J. W., Ackerman, J. P., “Preparation and characterization of lithtum aluminate”, Mat. Res. Bull. 13, pp.445-455, 1978.
12. Sang, W. K., Seung, B. P., “Effect of precursors on the preparation of lithium aluminate”, Journal of Nuclear Materials, 246, pp.131-138, 1997.
13. Lee, J. W., Pearton, S. J., Abernthy, C. R., “Wet and Dry Etching of LiGaO2 and LiAlO2”, Journal of Electrochemical society, 143, pp.169, 1996.
14. Laffey, S. M., John, R. V., Mary, A. H., “Method of polishing langasite”, United States Patent, US5605490, 1997.
15. Xu, K., Xu, J., Deng, P., Qiu, R., Fang, Z., “MOCVD growth of GaN on LiAlO2 (100) substrate”, Physica Status Solidi (A) Applied Research, 176, 1, pp.589-593, 1999.
16. Ploog, K. H., Ted, W. M., Roberto, F., Growth and characterization of M-plane GaN and (In, Ga)N/GaN multiple quantum wells, Mathematisch Naturwissenschaftlichen Fakultat I Humboldt Universitat, zu Berlin, 2004.
17. Ploog, K. H., Wolfgang, N., Wolfgang, J., Transmission electron microscopy studies of GaN/γ-LiAlO2 heterostructures, Mathematisch Naturwissenschaftlichen Fakultat I Humboldt Universitat, zu Berlin, 2004.
18. 曹百君, 以柴氏提拉法生長鋁酸鋰單晶晶體及其晶面的反向特性之研究, 材料科學研究所碩士論文, 國立中山大學, 2006.
19. 黃信介, 鋁酸鋰單晶成長與表面拋光之研究, 材料科學研究所碩士論文, 國立中山大學, 2006.
20. Wu, S. Q., Hou, Z. F., Zhu, Z. Z., “First- principles study on the structural, elastic, and electronic properties of γ-LiAlO2”, Compurarional Materials Science, 46, pp.221-224, 2009.
21. Lin, H., Zhou, S., Hao, T., Jia, T., Hou, X., Gu, S., Shunming Zhu, Zili Xie, Ping Han, Rong Zhang, “Polishing of (100) γ-LiAlO2 wafer and its effect on the epitaxial growth of ZnO films by MOCVD”, Journal of Alloys and Compounds, 479, L8-L10, 2009.
22. Material comparison table of substrates, Kallex Company, Ltd., Taiwan, 2010. http://www.kallex.com.tw/
23. Properties of silicon and silicon wafer, EL-CAT Inc., NJ 07463, USA, http://www.el-cat.com/
24. Preston, F. W., “The theory and design of plate glass polishing machine”, Journal of the society of glass technology, 11, pp.214, 1927.
25. Muldowney, G. P., James, D. B., “Characterization of CMP pad surface texture and pad- wafer contact”, Mat. Res. Stmp. Proc., pp.816, 2004.
26. Mahadevaiyer, K., Jakub, W. N., Lee, M, C., “Chemical mechanical planarization: slurry chemistry, materials, and mechanisms”, Chem. Rev., 110, pp.178-204, 2010.
27. Desal, T., Du, V., “Chemical mechanical planarization of copper: pH effect”, Journal of Materials Science Letters, 22, pp.1623-1625, 2003.
28. Du, T., Dnyanesh, T., Vimal, D., “Electrochemical characterization of copper chemical mechamical polishing”, Microelectronic Engineering, 69, pp.1-9, 2003.
29. Kim, N. H., Lim, J. H., Kim, S. Y., Chang, E. G., “Effects of phosphoric acid stabilizer on copper and tantalum nitride CMP”, Materials Letters, 57, pp.4601-4604, 2003.
30. Lee, D. W., Kim, T. G., Kim, N. H., Kim, S. Y., Chang, E. G., “Stability of H2O2 as an oxidizer for Cu CMP”, Electrical and Electronic Materials, 6, 1, pp.29-32, 2005.
31. Hiroki, T., Takashi, M., Yasuhiro, T., Terutake, H., Suzuki, K., Novel CMP Technique for Copper Surface Finishing with Fullerene Nano-Particle, American Society of Precision Engineering, California, USA, 2006.
32. Liu, P., Lu, X., Liu, Y., Luo, J., Pan, G., “Chemical Mechanical Planarization of Copper Using Ethylenediamine and Hydrogen Peroxide Based slurry”, Advanced Tribology Proceedings of CIST2008 & ITS-IFToMM2008, Beijing, China, 2008.
33. Lee, H., Joo, S., Jeong, H., “Mechanical effect of colloidal silica in copper chemical mechanical planarization”, Journal of Materials Processing Technology, 209, pp.6134-6139, 2009.
34. Armini, S., Whelan, C. M., Moinpour, M., K. M., “Copper CMP with composite polymer core–silica shell abrasives: a defectivity study”, Journal of Electrochemical Society, 156, 1, H18-H26, 2009.
35. Chen, C. C. A., Hsieh, C. H., “Effect of inhibiter concentration on Cu CMP slurry analyzed by a Cu ECMP system”, Electrochemical society, Las Vegas, USA, 2010.
36. Lowell, A. N., Leonard, N. G., Mickey, O. M., “Process for gas polishing sapphire and the like”, United States Patent, US4038117, 1977.
37. Doi, T., Ara, P., Koichiro, I., “Design and performance of a controlled atmosphere polisher for silicon crystal polishing”, Electrochemical and Solid-State Letters, 7, 8, G158-G160, 2004.
38. Doi, T. K., Ara, P., Koichiro, I., “A new bell-jar type controlled atmosphere polishing (CAP) machine and its characteristics”, The Japan Society for Precision Engineering, 70, 5, pp.726-731, 2004.
39. Denardis, D., Doi, T., Hiskey, B., Ichikawa, K., Ichikawa, D., Philipossian, A., “Impact of gaseous additives on copper CMP in neutral and alkaline solutions using a CAP system”, Journal of the Electrochemical Society, 152, 11, G824-G830, 2005.
40. Elfallagh, F., Inkson, B. J., “3D analysis of crack morphologies in silicate glass using FIB tomography”, Journal of the European Ceramic Society 29, pp.47-52, 2009.
41. Edward, J. H., Ghatu, S., “Analysis of interacting cracks due to sequential indentations on sapphire”, Acta Materialia 59, pp.3528-3536, 2011.
42. William, H., Experiments on the quantity of gases absorbed by water, at different temperatures, and under different pressures, Communicated by the Right Hon. Sir Joseph Banks, Philosophical Transactions of the Royal Society, 1802.
43. Ian, M., Tomislav, C., Klaus, H., Nikola, K., Kozo, K., Quantities, units and symbols in physical chemistry, Blackwell Science, 1993.
44. Rolf, S., Compilation of Henry’s Law constants for inorganic and organic species of potential importace in environmental chemistry, Air Chemistry Department, Max-Planck Institute of Chemistry, 1999.
45. Nic, M., Jirat, J., Kosata, B., “Hydrosis”, Compendium of Chemical Terminology, ISBN 0-9678550-9-8, Ver. 2.3.1, 2012.
46. Palla, “Organic compounds, Carbohydrates, & Lipids”, Science Pages, Urbana High School, USA, 2005.
47. 林銘棟,可水解材料基板之拋光特性研究, 機械工程學系實務專題, 國立台灣科技大學, 2009.
48. Gerras, G. C., Hartmann, P. P., Sasol Encyclopaedia of Science and Technology, New Africa Books, pp.143-146, ISBN 1869283848, 2007.
49. 陳炤彰, 製造分析課程講義, 機械工程學系, 國立台灣科技大學, 2010.
50. Material: Silicon Dioxide (SiO2), Material properties information, MEMS & Nanotechnology Exchange. https://www.memsnet.org/
51. Klimczyk, P., Figiel, P., Petrusha, I., Olszyna, A., “Cubic boron nitride based composites for cutting applications”, Journal of Achievements in Materials and Manufacturing Engineering, 44, 2, pp.198-204, 2011.

QR CODE