簡易檢索 / 詳目顯示

研究生: 林軒正
Hsuan-cheng - Lin
論文名稱: 鋁化處理對鈦合金於高溫氧化之作用
Effect of Aluminium Surface Modifications on the High-Temperature Oxidation of Ti-6Al-4V alloy
指導教授: 王朝正
Chaur-Jeng Wang
口試委員: 郭俞麟
Yu-Lin Kuo
李志偉
none
學位類別: 碩士
Master
系所名稱: 工程學院 - 機械工程系
Department of Mechanical Engineering
論文出版年: 2016
畢業學年度: 105
語文別: 中文
論文頁數: 101
中文關鍵詞: 熱浸鍍鋁熱熔射鋁熱循環氧化水汽恆溫氧化
外文關鍵詞: hot-dip aluminum, thermal spray aluminum, thermal cycle oxidation, steamsoxidation.
相關次數: 點閱:409下載:22
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究使用Ti64合金經熱浸鋁、熔射鋁,以及熱浸鋁/熔射鋁後電漿電解氧化處理,於550 oC ~ 750 oC進行靜置恆溫氧化、熱循環氧化及水汽恆溫氧化,探討鈦合金經鋁化處理後,於高溫氧化之作用。並於3.5 wt.% 鹽水環境中進行極化曲線試驗,測試鈦合金經鋁化處理後之常溫抗蝕性。
    實驗結果顯示,Ti64合金經熱浸鋁、熔射鋁之鋁化處理後,皆可大幅提升鈦合金之高溫壽命。於650 oC及750 oC熱循環氧化後,Ti64原材之氧化皮膜皆已剝離,熱浸鋁與熔射鋁處理後之試片,於高溫生成鈦鋁介金屬化合物,於此鋁化層內之裂紋尺度雖然會隨著循環次數增加而加深,但經10次熱循環後,其鋁化層仍附著於底材上。在水汽恆溫氧化後,原材及熱浸鋁/熔射鋁後試片皆使皮膜結構變為鬆散,進而加速氧化。熱浸鋁/熔射鋁後再電漿電解氧化試片,於650 oC及750 oC進行恆溫氧化24小時並爐冷至室溫後,氧化陶瓷層皆已失效。鈦合金經熱浸鋁與熔射鋁處理後,皆可提升於750 oC之抗熱循環氧化及抗水汽恆溫氧化,但會使鈦合金之常溫抗蝕性變差,熱浸鋁與熔射鋁後再電漿電解氧化處理,可部分提升鋁塗層之常溫抗蝕性,但無法提升抗高溫氧化性。


    In this work, we explore effect of Ti-6Al-4V alloy, aluminized Ti-6Al-4V alloy and oxide layer grown on the aluminized Ti-6Al-4V alloy during the oxidation test. The aluminized Ti-6Al-4V alloy is carried out by hot-dip aluminizing and thermal spraying aluminizing. The plasma electrolytic oxidation technique is employed to fabricate the oxide layer on the aluminized Ti-6Al-4V alloy. In addition, we investigate the effect of thermal oxidation on the aluminized Ti-6Al-4V alloy. The three methods of thermal oxidation test including static oxidation, thermal cycle test and thermal oxidation by steam are used in this experiment. The corrosion resistance of the aluminized specimens are evaluated by the potentiodynamic polarization test in 3.5 wt. % NaCl solution.
    According to result of experiment, the delamination at the TiO2/Ti-6Al-4V interlayer are found on the thermal oxidation from 650 to 750 oC. However, the aluminized Ti-6Al-4V alloy after oxidation test are bonded to the substrate due to the growth of Ti-Al intermetallic. We find the scale of the crack increases when increasing the cycle time at the thermal cycle oxidation test. The several voids and cracks at the thermal oxidation by steam are found on the Ti alloy and aluminized specimens to accelerate the rate of oxidation. The PEO coatings on the aluminized Ti alloy under isothermal oxidation test at 650 and 750 oC during 24 hrs. and the PEO coatings are cooled to room temperature. We find the PEO coatings are already delaminated on the substrate. Eventually, hot-dip aluminizing and thermal spraying aluminizing treatment on the Ti alloy increase the oxidation resistance at high temperature while decreasing the corrosion resistance at room temperature.

    第一章 前言 1 第二章 文獻回顧 3 2.1 鈦的基本性質 3 2.2 合金高溫氧化 3 2.3 純鈦及鈦合金高溫氧化 6 2.4 鈦合金經鋁化後之特性 8 2.4.1 鈦鋁生成相 8 2.4.2 鈦合金熱浸純鋁 10 2.4.3 鈦合金熔射鋁 11 2.5 電漿電解氧化 12 2.5.1 原理及簡介 12 2.5.2 鋁材及金屬熱浸純鋁後電漿電解氧化 13 2.6 熱循環氧化之影響 14 2.6.1 實驗方法之探討 14 2.6.2 熱循環之作用 15 2.7 水汽對高溫氧化之影響 19 第三章 實驗方法 22 3.1 實驗流程 22 3.2 試片製備 23 3.3 熱浸鍍鋁製程 23 3.3.1 試片前處理 23 3.3.2 熱浸鍍作業 24 3.4 電漿熔射鋁作業 24 3.5 熱浸鍍鋁/熔射鋁後電漿電解氧化作業 24 3.6 熱循環氧化試驗 26 3.7 水汽恆溫氧化試驗 27 3.7.1 乾空氣氧化試驗 27 3.7.2 濕空氣氧化試驗 27 3.8 極化曲線抗蝕性試驗 28 3.9 分析設備與方法 30 3.9.1 分析設備 30 3.9.2 分析方法 30 第四章 實驗結果 32 4.1 鈦合金鋁化處理 32 4.1.1 熱浸鋁後試片 32 4.1.2 熱浸鋁後再電漿電解氧化試片 34 4.1.3 熔射鋁後試片 36 4.1.4 熔射鋁後再電漿電解氧化試片 38 4.2 靜置恆溫氧化 40 4.3 熱循環氧化 42 4.3.1 氧化增重 42 4.3.2 氧化形態外觀 45 4.3.3 微結構變化及氧化產物分析 50 4.4 水汽恆溫氧化 56 4.4.1 氧化增重 56 4.4.2 氧化形態外觀 59 4.4.3 微結構變化及氧化產物分析 63 4.5 熱浸鋁/熔射鋁後再電漿電解氧化試片之恆溫氧化 73 4.5.1 氧化後外觀及截面形態 74 4.6 電化學試驗 75 4.6.1 極化曲線抗蝕性分析 75 4.6.2 電化學試驗後表面外觀及腐蝕產物分析 77 第五章 討論 80 5.1 高溫氧化後之皮膜成長與剝離機制 81 5.1.1 Ti64原材 81 5.1.2 熱浸鍍鋁 82 5.1.3 熱熔射鋁 83 5.1.4 熱浸鋁/熔射鋁後再電漿電解氧化 84 5.2 熱循環對鋁化層之影響 89 5.3 水汽之影響 90 5.4 兩種鋁化方式對高溫氧化之作用 91 第六章 結論 93 參考文獻 94

    [1] D. W. McKee and K. L. Luthra, "Plasma-sprayed coatings for titanium alloy oxidation protection," Surface and Coatings Technology, vol. 56, pp. 109-117, 1993.
    [2] T. Moskalewicz, B. Wendler, F. Smeacetto, M. Salvo, and A. Czyrska-Filemonowicz, "Microstructure, mechanical properties and oxidation behavior of the TiAl(Si,Ag) coating on near-α titanium alloy," Surface and Coatings Technology, vol. 202, pp. 5876-5881, 2008.
    [3] S. C. Jeng, "Oxidation behavior and microstructural evolution of hot-dipped aluminum coating on Ti-6Al-4V alloy at 800°C," Surface and Coatings Technology, vol. 235, pp. 867-874, 2013.
    [4] Y. Wang, J. Xiong, J. Yan, H. Fan, and J. Wang, "Oxidation resistance and corrosion behavior of hot-dip aluminized coatings on commercial-purity titanium," Surface and Coatings Technology, vol. 206, pp. 1277-1282, 2011.
    [5] Z. G. Zhang, Y. P. Peng, Y. L. Mao, C. J. Pang, and L. Y. Lu, "Effect of hot-dip aluminizing on the oxidation resistance of Ti–6Al–4V alloy at high temperatures," Corrosion Science, vol. 55, pp. 187-193, 2012.
    [6] D. Wang, Z. Shi, and Y. Teng, "Microstructure and oxidation of hot-dip aluminized titanium at high temperature," Applied Surface Science, vol. 250, pp. 238-246, 2005.
    [7] T. Sasaki, T. Yagi, T. Watanabe, and A. Yanagisawa, "Aluminizing of TiAl-based alloy using thermal spray coating," Surface and Coatings Technology, vol. 205, pp. 3900-3904, 2011.
    [8] M. S. Chu and S. K. Wu, "The improvement of high temperature oxidation of Ti–50Al by sputtering Al film and subsequent interdiffusion treatment," Acta Materialia, vol. 51, pp. 3109-3120, 2003.
    [9] G. A. Capuano, A. Dang, U. Bernabai, and F. Felli, "High Temperature Oxidation and Thermal Cycling of Aluminum Electroplated Stainless Steels," Oxidation of Metals, vol. 39, pp. 263-279, 1993.
    [10] S. W. Jiang, G. F. Yin, C. Q. Zheng, Z. Li, Y. G. Meng, and W. Y. Yang, "Friction and wear behavior of DLC gradient film on Ti6Al4V alloy substrate in sliding against ultra-high molecular weight polyethylene," Tribology, vol. 21, pp. 167–171, 2001.
    [11] W. Zhou, Y. G. Zhao, W. Li, Q. D. Qin, B. Tian, and S. W. Hu, "Al–Si coating fused by Al + Si powders formed on Ti–6Al–4V alloy and its oxidation resistance," Materials Science and Engineering: A, vol. 430, pp. 142-150, 2006.
    [12] Chegg Study,資料來源:http://www.chegg.com/homework-help/questions-and-answers/1-specialized-oxygen-ellingham-diagram-end-problem-set-includes-equilibrium-line-mullite-s-q1224055,2016年。
    [13] 汪瑞芳, "不同 Ni-Al 表面改質對Ti-6Al-4V合金其高溫氧化的影響",國立臺灣海洋大學材料所碩士論文,民國97年。
    [14] P. Y. Qi, X. Y. Li, H. Dong, and T. Bell, "Characterisation of the palladium-modified thermal oxidation-treated titanium," Materials Science and Engineering, vol. A326, pp. 330–342, 2002.
    [15] A. Biswas and J. D. Majumdar, "Surface characterization and mechanical property evaluation of thermally oxidized Ti-6Al-4V," Materials Characterization, vol. 60, pp. 513-518, 2009.
    [16] F. Borgioli, E. Galvanetto, A. Fossati, and G. Pradelli, "Glow-discharge and furnace treatments of Ti-6Al-4V," Surface and Coatings Technology, vol. 184, pp. 255-262, 2004.
    [17] A. Ashrafizadeh and F. Ashrafizadeh, "Structural features and corrosion analysis of thermally oxidized titanium," Journal of Alloys and Compounds, vol. 480, pp. 849-852, 2009.
    [18] A. M. Chaze and C. Coddet, "Influence of aluminium on the oxidation of titanium between 550 and 750 °C," Journal of the Less-Common Metals, vol. 57, pp. 55 - 70, 1990.
    [19] H. L. Du, P. K. Datta, D. B. Lewis, and J. S. Burnell-Gray, "Air oxidation behaviour of Ti-6Al-4V alloy between 650 and 850°C," Corrosion Science, vol. 36, pp. 631-642, 1994.
    [20] H. L. Du, P. K. Datta, D. B. Lewis, J. S. Burnell-Gray, and D. Jenkinson, "Oxidation/Sulphidation of Ti and Ti-6Al-4V at 750°C Alloy," Key Engineering Materials, vol. 99-100, pp. 151-160, 1995.
    [21] J. Wang, L. Kong, T. Li, and T. Xiong, "Oxidation Behavior of Thermal Barrier Coatings with a TiAl3 Bond Coat on γ-TiAl Alloy," Journal of Thermal Spray Technology, vol. 24, pp. 467-475, 2014.
    [22] M. Sujata, S. Bhargava, and S. Sangal, "On the formation of TiAl3 during reaction between solid Ti and liquid Al, " Journal of Materials Science Letters, vol. 16, pp. 1175–1178, 1997.
    [23] 邱柏翰,"純鈦熱浸鋁液微弧氧化多層膜製備研究",大同大學材料所碩士論文,民國102年。
    [24] Z. G. Zhang, X. Teng, Y. L. Mao, C. X. Cao, S. J. Wang, and L. Wang, "Improvement of Oxidation Resistance of γ-TiAl at 900 and 1000 °C Through Hot-dip Aluminizing," Oxidation of Metals, vol. 73, pp. 455-466, 2010.
    [25] Z. G. Zhang, Y. J. Wang, L. J. Xiao, L. Q. Zhang, Y. Su, and J. S. Lin, "High-temperature oxidation of hot-dip aluminizing coatings on a Ti3Al–Nb alloy and the effects of element additions," Corrosion Science, vol. 64, pp. 137-144, 2012.
    [26] L. Kong, B. Lu, X. Cui, H. Du, T. Li, and T. Xiong, "Oxidation Behavior of TiAl3/Al Composite Coating on Orthorhombic Ti2AlNb Based Alloy at Different Temperatures," Journal of Thermal Spray Technology, vol. 19, pp. 650-656, 2010.
    [27] L. Kong, J. Qi, B. Lu, R. Yang, X. Cui, T. Li and T. Xiong, "Oxidation resistance of TiAl3–Al composite coating on orthorhombic Ti2AlNb based alloy," Surface and Coatings Technology, vol. 204, pp. 2262-2267, 2010.
    [28] Y. M. Wang, H. Tian, X. E. Shen, L. Wen, J. H. Ouyang, Y. Zhou, D. C. Jia and L. X. Guo, "An elevated temperature infrared emissivity ceramic coating formed on 2024 aluminium alloy by microarc oxidation," Ceramics International, vol. 39, pp. 2869-2875, 2013.
    [29] N. Xiang, R. G. Song, J. Zhao, H. Li, C. Wang, and Z. X. Wang, "Microstructure and mechanical properties of ceramic coatings formed on 6063 aluminium alloy by micro-arc oxidation," Transactions of Nonferrous Metals Society of China, vol. 25, pp. 3323-3328, 2015.
    [30] 陳宥任,"熱浸鍍鋁中碳鋼之微弧氧化鍍膜特性分析,"國立台灣科技大學機械所碩士論文,民國103年。
    [31] 張帆,"微弧氧化對純鋁及熱浸鍍鋁低碳鋼表面改質之影響",國立台灣科技大學機械所碩士論文,民國102年。
    [32] 游晴暉,"機車排氣管用鋼料之高溫氧化",國立台灣科技大學機械所碩士論文,民國96年。
    [33] 鄭福本,"鎳基超合金銲件在950 ℃乾/濕空氣環境下之循環氧化行為研究",國立臺灣海洋大學材料所碩士論文,民國103年。
    [34] C. O. Moon and S. B. Lee, "Analysis on failures of protective-oxide layers and cyclic oxidation," Oxidation of Metals, vol. 39, p. 1, 1993.
    [35] J. H. Sun, E. Chang, C. H. Chao, and M. J. Cheng, "The spalling models and degradation mechanism of ZrO2 - 8 wt.% Y2O3/CVD-Al2O3/Ni-22Cr-10Al-1Y Thermal-Barrier Coatings," Oxidation of Metals, vol. 40, p. 465, 1993.
    [36] 劉勳洲,"鋁矽塗層於310耐熱鋼之氯化鈉循環熱腐蝕",國立台灣科技大學機械所碩士論文,民國85年。
    [37] 潘正益,"鐵基合金沉積氯化鈉/硫酸鈉混合鹽於燃燒爐之熱腐蝕",國立台灣科技大學機械所博士論文,民國93年。
    [38] Y. Wouters, A. Galerie, and J. P. Petit, "Thermal oxidation of titanium by water vapour," Solid State Ionics, vol. 104, pp. 89–96, 1997.
    [39] S. Taniguchi, N. Hongawara, and T. Shibata, "Influence of water vapour on the isothermal oxidation behaviour of TiAl at high temperatures," Materials Science and Engineering, vol. A307, pp. 107–112, 2001.
    [40] A. Zeller, F. Dettenwanger, and M. S. Schutze, "Influence of water vapour on the oxidation behaviour of titanium aluminides," Intermetallics, vol. 10, pp. 59–72, 2002.
    [41] 邱宗聖,"商用鈦合金之高溫腐蝕行為研究",國立臺灣海洋大學材料所碩士論文,民國95年。
    [42] 張峰筌,''液態電漿氧化處理對Ti-6Al-4V鈦合金之微結構與機械性質影響研究'',國立台灣科技大學機械所碩士論文,民國104年。
    [43] C. J. Hu and P. H. Chiu, "Wear and Corrosion Resistance of Pure Titanium Subjected to Aluminization and Coated with a Microarc Oxidation Ceramic Coating," International Journal of Electrochemical Science, vol. 10, pp. 4290 - 4302, 2015.
    [44] F. N. Rhines and J. S. Wolf, "The Role of Oxide Microstructure and Growth Stresses in the High-Temperature Scaling of Nickel," Metallurgical Transactions, vol. 1, pp. 1701-1710, 1970.
    [45] 莊哲豪,"陽極處理之低碳鋼熱浸鍍鋁於氯化鈉水溶液與高溫環境之腐蝕行為探討",國立台灣科技大學機械所碩士論文,民國97年。
    [46] 材料性質參數表,''Matweb'',資料來源:http://www.matweb.com/,2016年。
    [47] X. H. Wang and Y. C. Zhou, "High-Temperature Oxidation Behavior of Ti2AlC in Air," Oxidation of Metals, vol. 59, pp. 303-320, 2003.
    [48] 王海燕,歷長雲, 高潔, 胡前庫, 米國發,"高壓下TiAl3 結構及熱動力學性質的第一性原理研究", 物理學報, vol. 62, p. 068105, 2013.
    [49] J. E. Benci, J. C. Ma, and T. P. Feist, "Evaluation of the intermetallic compound Al2Ti for elevated-temperature applications," Materials Science and Engineering, vol. Al 92/l 93, pp. 38-44, 1995.
    [50] H. D. Shashikala, S. V. Suryanarayana, and K. S. N. Murthy, "Thermal expansion characteristics of Ti3Al and the effect of additives," Journal of the Less-Common Metals, vol. 155, pp. 23 - 29, 1989.
    [51] 鑽孔法(hole-drilling method)測量殘留應力,資料來源:http://web.nchu.edu.tw/~weite/chii/input-l02/My%20Webs/hole%20drilling.htm,2016年。
    [52] M. Kabiri, "Measurement of Residual Stresses by the Hole-drilling Method Influences of Transverse Sensitivity of the Gages and Relieved strain Coefficients," Experimental Mechanics, vol. 24, pp. 252-256, 1984.
    [53] C. W. Tuck, M. Odgers, and K. Sachs, "The oxidation of iron at 950 °C in oxygen - water vapour mixtures," Corr. Sci., vol. 9, p. 271, 1969.

    QR CODE