簡易檢索 / 詳目顯示

研究生: 何家維
Chia-wei Ho
論文名稱: 不同濕度環境下鋼筋混凝土的碳化模式及其碳化後之力學行為與抗腐蝕能力
Carbonation Models of Reinforced Concrete Under Various Humidity Environments and Its Associated Mechanical Behaviors and Corrosion Resistance
指導教授: 陳君弢
Chun-tao Chen
口試委員: 黃然
none
張大鵬
Ta-peng Chang
張建智
none
學位類別: 碩士
Master
系所名稱: 工程學院 - 營建工程系
Department of Civil and Construction Engineering
論文出版年: 2011
畢業學年度: 99
語文別: 中文
論文頁數: 198
中文關鍵詞: 濕度循環中性化碳化鋼筋混凝土碳化係數鋼筋腐蝕
外文關鍵詞: humidity cycles
相關次數: 點閱:328下載:9
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

摘要

本研究主要探討不同濕度試驗環境下鋼筋混凝土的碳化行為及其碳化後的力學行為與抗腐蝕能力。以固定水灰比(w/c = 0.6)製作混凝土試體,在飽和石灰水中養護28天後烘乾至恆重,再置於25℃、二氧化碳濃度50%的環境下,以不同的相對濕度(濕度循環70-90%、50-90%與定值濕度50%、70%和90%)加速混凝土碳化。

研究結果顯示:(1)在濕度循環的加速環境下碳化速率較定值濕度環境快。(2)經二氧化碳濃度修正後,濕度循環加速環境下所得之碳化係數與現地碳化係數較接近。(3)鋼筋混凝土在碳化後其力學性質包括抗壓強度、劈裂強度與握裹強度皆增加,與碳化深度成正比,但與加速環境的濕度無關。(4)鋼筋混凝土碳化使鋼筋越容易腐蝕,碳化深度越深則抗蝕能力衰減越明顯。


ABSTRACT
The purpose of this study is to explore the effects of humidity on the carbonation of the reinforced concrete and its associated mechanical properties and corrosion resistance. Concrete specimens with w/c of 0.6 were cured in saturated lime water for 28 days, oven-dried, and then put in accelerated environments with a constant temperature of 25 °C, CO2 concentration of 50% by volume, and various humidity environments, including constant humidities of 50%, 70%, and 90%, and cycling relative humidities ranging from 50% to 90%, or 70% to 90%. Results were summarized as follows. First, the cycling humidities induced higher carbonation coefficient than the constant humidity. Second, the converted carbonation coefficients determined by the cycling humidity environment were close to those determined from the onsite investigation. Third, the mechanical properties of the concrete were found increased by the carbonation. Fourth, the carbonation reduced the corrosion resistances of the reinforcements. Both the changes in the mechanical properties of the concrete and corrosion resistances of the reinforcements were associated with carbonation depth more than the relative humidities of the accelerated environment.

總目錄 中文摘要 I 英文摘要 II 致謝 III 總目錄 IV 表目錄 VII 圖目錄 X 第一章 緒論 1 1.1 研究動機 1 1.2 研究目的 2 1.3 研究方法與流程 2 第二章 文獻回顧 4 2.1 混凝土碳化機理探討 4 2.2 混凝土碳化速率及碳化深度 8 2.3 鋼筋腐蝕機理 12 2.3.1 腐蝕的基本條件 12 2.3.2 碳化對混凝土中鋼筋鏽蝕的影響 14 2.3.3 鋼筋混凝土腐蝕破壞過程 15 2.3.4 鋼筋混凝土鋼筋握裹強度發展與影響 16 2.3.5 鋼筋握裹力破壞模式 19 2.4 腐蝕量測方法 21 2.4.1 開路電位 22 2.4.2 直流極化法 23 2.4.3 交流阻抗 26 2.5 現地氣候模擬 30 2.5.1 加速溫濕循環模式的建立 30 2.5.2 現地碳化係數的調查 36 第三章 試驗計畫 37 3.1 試驗變數 37 3.1.1 定濕度環境 38 3.1.2 現地氣候模擬 39 3.1.3 試體編碼說明 43 3.2 試驗材料與配比 44 3.3 試體製作 52 3.3.1 碳化試體 52 3.3.2 拉拔試體 54 3.3.3 腐蝕試體 55 3.4 試驗原理及方法 61 3.4.1 先期試驗 61 3.4.2 碳化深度 63 3.4.3 力學性質 69 3.4.4 鋼筋腐蝕量測 74 3.5 試驗設備 78 3.5.1 加速碳化環境設備 78 3.5.2 力學試驗儀器 82 3.5.3 腐蝕量測儀器 88 3.5.4 其他試驗器材 94 第四章 試驗結果與分析 96 4.1 前言 96 4.2 碳化速率 96 4.3 現地與加速環境碳化係數比較 107 4.4 力學性質 111 4.4.1 抗壓強度 111 4.4.2 劈裂強度 118 4.4.3 拉拔強度 120 4.5 鋼筋腐蝕量測方法 125 4.5.1 不同電解液對腐蝕量測的影響 125 4.6 碳化鋼筋混凝土抗腐蝕能力 140 4.6.1 開路電位 140 4.6.2 直流極化法 143 4.6.3 交流阻抗法 144 第五章 結論與建議 147 5.1 結論 147 5.2 建議 148 參考文獻 149 附錄A 2000-2009年台北氣象站氣候資料 153 附錄B 現地碳化資料 164 附錄C 2002-2010年台北松山測站空氣品質監測資料 176 作者簡介 179

參考文獻

[1] 李堅明, "高全球暖化潛勢溫室氣體之減量潛力分析," 民生化工產業溫室氣體減量報導(季刊), Vol. 16, 2002.
[2] A. M. Neville, Properties of Concrete, 3 ed., Pitman Pub., pp.384-399, New York , 1981.
[3] 黃兆龍編撰, 混凝土性質與行為, p.77-85, 詹氏書局, 臺北市, 2001.
[4] L. J. Parrott ,"A Review of Carbonation of Concrete," Cement and Concrete Association, p. 42, 1987.
[5] V. G. Papadakis, C. G. Vayenas, and M. N. Fardis, "Physical and Chemical Characteristics Affecting the Durability of Concrete," ACI Materials Journal, Vol. 88, No.2, pp. 186-196, Mar-Apr 1991.
[6] V. G. Papadakis, C. G. Vayenas, and M. N. Fardis, "A Reaction-Engineering Approach to the Problem of Concrete Carbonaiton," AIChE Journal, Vol. 35, No.10, pp. 1639-1650, Oct 1989.
[7] A. Maries ,"The Activation of Portland Cement by Carbon Dioxide in Proceedings of Proceedings of Conference ", Cement and Concrete Science, pp.203-228, Oxford, UK, 1985.
[8] K. Sisomphon and L. Franke, "Carbonation Rates of Concretes Containing High Volume of Pozzolanic Materials," Cement and Concrete Research, Vol. 37, No.12, pp. 1647-1653, Dec 2007.
[9] M. A. El-Reedy, Steel-Reinforced Concrete Structures : Assessment and Repair of Corrosion , CRC Press, Boca Raton, 2008.
[10] Y. H. Loo, M. S. Chin, C. T. Tam, and K. C. G. Ong, "A Carbonation Prediction Model for Accelerated Carbonation Testing of Concrete," Magazine of Concrete Research, Vol. 46, No.168, pp. 191-200, Sep 1994.
[11] V. G. Papadakis, C. G. Vayenas, and M. N. Fardis, "Fundamental Modeling and Experimental Investigation of Concrete Carbonation," ACI Materials Journal, Vol. 88, No.4, pp. 363-373, Jul-Aug 1991.
[12] P. K. Mehta, Concrete : Structure, Properties, and Materials, Prentice-Hall, Englewood Cliffs, N.J., 1986.
[13] 黃兆龍編撰, 混凝土中氯離子含量檢測技術及試驗, 修訂三版. 詹氏出版社, pp.28, 臺北市, 2002.
[14] ACI Committee 408, "State of the Art Report on Bond Under Cyclic Loads", ACI International, Detroit, Michigan, 1992.
[15] H. H. Abrishami and D. Mitchell, "Simulation of Uniform Bond Stress," ACI Materials Journal, Vol. 89, No.2, pp. 161-168, 1992.
[16] A. S. Ezeldin and P. N. Baloguru, "Bond Behavior of Normal and High-Strength Fiber Reinforced Concrete," ACI Materials Journal, Vol. 86, No.5, pp. 515-524, 1989.
[17] D. Soroushian, F. Mirza, and A. Alhozaimy, "Bond of Confined Steel Fiber Reinforced Concrete to Deformed Bars," ACI Materials Journal, Vol. 86, No.2, pp. 167-174, 1989.
[18] R. A. Treece and J. O. Jirsa, "Bond Stress of Epoxy-Coated Reinforcing Bars," ACI Materials Journal, Vol. 86, No.2, pp. 167-174, 1989.
[19] ASTM C876-91, "Standard Test Method for Half-Cell Potentials of Uncoated Reinforcing Steel in Concrete", ASTM International, West Conshohocken, PA, 1999.
[20] ASTM G59-97, "Standard Test Method for Conducting Potentiodynamic Polarization Resistance Measurements", ASTM International, West Conshohocken, PA, 2009.
[21] W. J. McCarter and R. Brousseau, "The A.C.Response of Hardened Cement Paste," Cement and Concrete Research, Vol. 20, No.6, pp. 891-900, 1990.
[22] P. Gu, Y. Fu, P. Xie, and J. J. Beaudoin, "Effect of Uneven Porosity Distribution in Cement Paste and Mortar on Reinforcing Steel Corrosion," Cement and Concrete Research, Vol. 24, No.6, pp. 1055-1064, 1994.
[23] 李英儒, "交流電阻抗分析法於脂多醣體檢測之應用," 碩士論文, p.31-34, 國立成功大學, 2001.
[24] 王傳輝, "台灣地區鋼筋混凝土橋中性化效應之耐久性評估," 碩士論文, p.31-34 , p.64, 國立台北科技大學, 2005.
[25] 吳文斌, "鋼筋混凝土腐蝕耐久性量測技術之研究," 碩士論文, p.85, 國立海洋大學, 2000.
[26] 紀茂傑, "混凝土耐久性影響因素及評估方法之研究," 博士論文, p.152, 國立海洋大學, 2002.
[27] 許學殷, "混凝土中鋼筋腐蝕對握裹強度之影響," 碩士論文, p.92, 雲林科技大學, 2001.
[28] 薛蒼林, "輸氣混凝土中性化行為之探討," 碩士論文, p.116, 國立成功大學, 2002.
[29] M. F. Bertos, S. J. R. Simons, C. D. Hills, and P. J. Carey, "A Review of Accelerated Carbonation Technology in the Treatment of Cement-Based Materials and Sequestration of CO2," Journal of Hazardous Materials, Vol. 112, No.3, pp. 193-205, Aug 2004.
[30] Y. F. Houst and F. H. Wittmann, "Depth Profiles of Carbonates Formed During Natural Carbonation," Cement and Concrete Research, Vol. 32, No.12, pp. 1923-1930, 2002.
[31] S. K. Roy, K. B. Poh, and D. O. Northwood, "Durability of concrete - Accelerated Carbonation and Weathering Studies," Building and Environment, Vol. 34, No.5, pp. 597-606, Sep 1999.
[32] L. D. Albright, Environment Control for Animals and Plants. ASAE Publication, pp.274-279, St. Joseph, Michigan, 1990.
[33] R. Hardy, "ITS-90 Formulations for Vapor Pressure, Frost point Temperature, Dew point Temperature, and Enhancement Factors in the Range –100 to +100 C," Papers and Abstracts of the Third International Symposium on Humidity and Moisture, Vol. 1, pp. 214-222, 1998.
[34] D. Sonntag, "Advancements in the Field of Hygrometry," Meteorologische Zeitschrift, Vol. 3, pp. 51-66, 1997.
[35] A. Wexler, "Vapor Pressure Formulation for Water in the Range 0 to 100°C," Research of the National Bureau of Standards, Vol. 80A, pp. 775-785, 1976.
[36] A. Wexler, "Vapor Pressure Formulation for Ice," National Bureau of Standards –A. Physics and Chemistry, Vol. 81A, pp. 5-19, 1977.

[37] Buck Research Manual, "New Equations for Computing Vapor Pressure and Enhancement Factor," Meteorol., Vol. 20, pp. 1527-1532, 1981.
[38] L. Greenspan, "Functional Equations for the Enhancement Factors of CO2-Free Moist Air," National Bureau of Standards, Physics and Chemistry, Vol. 30A, pp. 41-44, 1976.
[39] ASTM C192M-07, "Standard Practice for Making and Curing Concrete Test Specimens in the Labratory", ASTM International, West Conshohocken, PA, 2007.
[40] NIST, IUPAC-NIST Solubility Database Version 1.0, http://srdata.nist.gov/solubility/index.aspx, 2007.
[41] RILEM Recommendations, "CPC-18 Measurement of hardened concrete carbonation depth", Materials and Structures, Vol.18 ,No.6, pp.453-455, 1985.
[42] ASTM C39M-05, "Standard Test Method for Compressive Strength of Cylindrical Concrete Specimens", ASTM International, West Conshohocken, PA, 2005.
[43] ASTM C469M-04, "Standard Test Method for Splitting Tensile Strength of Cylindrical Concrete Specimens", ASTM International, West Conshohocken, PA, 2004.
[44] ASTM C234-91a, "Standard Test Method for Comparing Concretes on the Basis of the Bond Developed with Reinforcing Steel", ASTM International, West Conshohocken, PA, 1991.
[45] ASTM C469M-10, "Standard Test Method for Static Modulus of Elasticity and Poisson's Ratio of Concrete in Compression", ASTM International, West Conshohocken, PA, 2002.
[46] S. Mindess and J. F. Young, Concrete ,Prentice-Hall, pp.308-311, Englewood Cliffs, N.J., 1981.
[47] J. P. Broomfield, Corrosion of Steel in Concrete : Understanding, Investigation, and Repair, 1 ed., E & FN Spon, pp.46-57, New York, 1997.
[48] 中央氣象局全球資訊網, 氣候統計資料, http://www.cwb.gov.tw/V6/index.htm, 2009.
[49] 行政院環境保護署, 空氣品質監測資料, http://www.epa.gov.tw/, 2009.

QR CODE