簡易檢索 / 詳目顯示

研究生: 楊孟儒
Meng-Ru Yang
論文名稱: 基於霍夫邁斯特效應之浸泡策略以獲取具可調節凝膠化溫度、機械性能及離子導電性之明膠水凝膠
Hofmeister Effect-Based Soaking Strategy for Gelatin Hydrogels with Adjustable Gelation Temperature, Mechanical Properties, and Ionic Conductivity
指導教授: 蔡協致
Hsieh-Chih Tsai
口試委員: 高震宇
Chen-Yu Kao
林宣因
Shuian-Yin Lin
學位類別: 碩士
Master
系所名稱: 應用科技學院 - 應用科技研究所
Graduate Institute of Applied Science and Technology
論文出版年: 2023
畢業學年度: 111
語文別: 英文
論文頁數: 62
中文關鍵詞: 明膠水凝膠霍夫邁斯特效應親水離子鹽析
外文關鍵詞: Gelatin hydrogel, Hofmeister effect, Kosmotropic ion, Salting out
相關次數: 點閱:215下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 明膠水凝膠作為一種具有良好生物相容性的天然聚合物,長期以來已被廣泛的應用於生物醫學領域。然而,由於往往缺乏合適的凝膠化溫度和機械特性等劣勢,極大地限制其在多樣且複雜體內環境下之臨床應用性。在這項研究中,我們提出基於霍夫麥斯特效應將明膠水凝膠浸泡於適當濃度硫酸鈉溶液,並由親水離子主導分子鏈間相互作用之變化,來對其多項性能進行全面性調整之策略。一系列經過不同鹽類濃度處理後的明膠水凝膠,微結構產生改變帶來孔隙數量及尺寸的總體下降、約32攝氏度至46攝氏度極廣的凝膠化溫度調整範圍、強至約40倍來到0.8345 MPa的應力增強、高至約7倍來到238.05% 的應變提升,以及一定程度的電導能力。因此,我們嘗試製備成微針貼片來進行應用性測試,其呈現出單根針體來至0.661牛頓的優秀針體穿刺(抗壓)強度。總的來說,在結合多種表徵並解釋背後機制下,這種方法提供了一種更加簡便高效的性質調控模式,並通用於A型及B型明膠水凝膠. 一方面,它能協助我們更好地預測明膠水凝膠使用在其他體內或體外鹽類環境中的可能變化。另一方面,多樣的性能改善及賦予能力也為如智能傳感器、電子皮膚和藥物輸送等領域,帶來了巨大的發展潛力。


    As a natural polymer with good biocompatibility, gelatin hydrogel has been widely used in the field of biomedical science for a long time. However, the lack of suitable gelation temperature and mechanical properties often limit the clinical applicability in diverse and complex environments. Here, we proposed a strategy based on the Hofmeister effect that gelatin hydrogels were soaked in the appropriate concentration of sodium sulfate solution, and the change in molecular chain interactions mainly guided by kosmotropic ions resulted in a comprehensive adjustment of multiple properties. A series of gelatin hydrogels treated with different concentrations of the salt solution gave rise to microstructural changes, which brought a reduction in the number and size of pores, a wide range of gelation temperature from 32°C to 46°C, a stress enhancement of about 40 times stronger to 0.8345 MPa, a strain increase of about 7 times higher to 238.05%, and a certain degree of electrical conductivity to be utilized for versatile applications. In this regard, for example, we prepared microneedles and obtained a remarkable compression (punctuation) strength of 0.661 N/needle, which was 55 times greater than those of untreated ones. Overall, by integrating various characterizations and suggesting the corresponding mechanism behind the phenomenon, this method provides a simpler and more convenient performance control procedure. This allowed to easily modulate the properties of the hydrogel as per the intended purpose, revealing its vast potential applications such as smart sensors, electronic skin, and drug delivery.

    Acknowledgements I 摘要 II Abstract III Table of Contents IV List of Figures VI List of Tables VIII Chapter 1 Introduction 1 Chapter 2 Literature Review 3 2.1 Hydrogel 3 2.2 Gelatin 6 2.3 Hofmeister Effect 8 2.4 Microneedle Array 11 Chapter 3 Experimental Section 14 3.1 Chemical and Materials 14 3.2 Preparation of Gelatin Hydrogels and Salt Solutions 14 3.3 Rheological Test 14 3.4 Water Content Measurement 15 3.5 Tensile Test 15 3.6 Scanning Electron Microscope (SEM) Characterization 16 3.7 X-ray Diffraction (XRD) Characterization 16 3.8 Electrical Conductivity Test 16 3.9 Preparation of Gelatin Microneedle Array 16 3.10 Compression Test 16 Chapter 4 Flow of the Experiment 18 4.1 Concept of Design 18 4.2 Process Flow 18 Chapter 5 Results and Discussion 19 5.1 Influence of Gelatin Hydrogel under Different Salts 19 5.2 Change of Gelatin Rheological Behavior under Na2SO4 21 5.3 Change in the Appearance of Gelatin Hydrogel 29 5.4 Change in the Microstructure of Gelatin Hydrogel 34 5.5 Change in the Tensile Properties of Gelatin Hydrogel 40 5.6 Change in the Conductivity of Gelatin Hydrogel 43 5.7 Compression Performance of Microneedle Array with Soaking Strategy 44 Chapter 6 Conclusion 46 References 47

    1. Bose, S. and A. Bandyopadhyay, Introduction to Biomaterials, in Characterization of Biomaterials. 2013. p. 1-9.
    2. Song, R., et al., Current development of biodegradable polymeric materials for biomedical applications. Drug Des Devel Ther, 2018. 12: p. 3117-3145.
    3. Francis, R. and D.S. Kumar, Biomedical applications of polymeric materials and composites. 2016: John Wiley & Sons.
    4. Soni, S.S. and C.B. Rodell, Polymeric materials for immune engineering: Molecular interaction to biomaterial design. Acta Biomater, 2021. 133: p. 139-152.
    5. Mohd Radzali, N.A., et al., Mechanical properties of polymeric biomaterials: Modified ePTFE using gamma irradiation. Open Chemistry, 2021. 19(1): p. 1207-1215.
    6. Ahumada, M., et al., Porosity in Biomaterials: A Key Factor in the Development of Applied Materials in Biomedicine, in Handbook of Ecomaterials, L.M.T. Martínez, O.V. Kharissova, and B.I. Kharisov, Editors. 2019, Springer International Publishing: Cham. p. 3503-3522.
    7. Sun, W., et al., Chemical Surface Modification of Polymeric Biomaterials for Biomedical Applications. Macromol Rapid Commun, 2020. 41(8): p. e1900430.
    8. Singhvi, M.S., S.S. Zinjarde, and D.V. Gokhale, Polylactic acid: synthesis and biomedical applications. J Appl Microbiol, 2019. 127(6): p. 1612-1626.
    9. Kong, X.-b., et al., Polyethylene glycol as a promising synthetic material for repair of spinal cord injury. Neural Regeneration Research, 2017. 12(6).
    10. Wendels, S. and L. Averous, Biobased polyurethanes for biomedical applications. Bioact Mater, 2021. 6(4): p. 1083-1106.
    11. Zhu, Z., et al., Hyaluronic acid: a versatile biomaterial in tissue engineering. Plastic and Aesthetic Research, 2017. 4: p. 219-227.
    12. Chu, S., et al., Protein Based Biomaterials for Therapeutic and Diagnostic Applications. Prog Biomed Eng (Bristol), 2022. 4(1): p. 012003.
    13. Van Den Bulcke, A.I., et al., Structural and rheological properties of methacrylamide modified gelatin hydrogels. Biomacromolecules, 2000. 1(1): p. 31-8.
    14. Leong, W., T.T. Lau, and D.A. Wang, A temperature-cured dissolvable gelatin microsphere-based cell carrier for chondrocyte delivery in a hydrogel scaffolding system. Acta Biomater, 2013. 9(5): p. 6459-67.
    15. Jaipan, P., A. Nguyen, and R.J. Narayan, Gelatin-based hydrogels for biomedical applications. MRS Communications, 2017. 7(3): p. 416-426.
    16. Dash, R., M. Foston, and A.J. Ragauskas, Improving the mechanical and thermal properties of gelatin hydrogels cross-linked by cellulose nanowhiskers. Carbohydr Polym, 2013. 91(2): p. 638-45.
    17. Bigi, A., et al., Drawn gelatin films with improved mechanical properties. Biomaterials, 1998. 19(24): p. 2335-40.
    18. Xing, Q., et al., Increasing mechanical strength of gelatin hydrogels by divalent metal ion removal. Sci Rep, 2014. 4(1): p. 4706.
    19. Balakrishnan, B., et al., Evaluation of an in situ forming hydrogel wound dressing based on oxidized alginate and gelatin. Biomaterials, 2005. 26(32): p. 6335-42.
    20. Dong, Z., et al., Gelatin methacryloyl (GelMA)-based biomaterials for bone regeneration. RSC Adv, 2019. 9(31): p. 17737-17744.
    21. Farris, S., J. Song, and Q. Huang, Alternative reaction mechanism for the cross-linking of gelatin with glutaraldehyde. J Agric Food Chem, 2010. 58(2): p. 998-1003.
    22. Balakrishnan, B., et al., Evaluation of an in situ forming hydrogel wound dressing based on oxidized alginate and gelatin. Biomaterials, 2005. 26(32): p. 6335-6342.
    23. Sun, T.L., et al., Physical hydrogels composed of polyampholytes demonstrate high toughness and viscoelasticity. Nature materials, 2013. 12(10): p. 932-937.
    24. Sahu, A., W.I. Choi, and G. Tae, A stimuli-sensitive injectable graphene oxide composite hydrogel. Chem Commun (Camb), 2012. 48(47): p. 5820-2.
    25. Derkach, S.R., et al., Molecular structure and properties of kappa-carrageenan-gelatin gels. Carbohydr Polym, 2018. 197: p. 66-74.
    26. Qin, Z., et al., A transparent, ultrastretchable and fully recyclable gelatin organohydrogel based electronic sensor with broad operating temperature. Journal of Materials Chemistry A, 2020. 8(8): p. 4447-4456.
    27. Wang, X., et al., Hofmeister effect in gelatin-based hydrogels with shape memory properties. Colloids Surf B Biointerfaces, 2022. 217: p. 112674.
    28. Wang, J., et al., Self-assembly and metal ions-assisted one step fabrication of recoverable gelatin hydrogel with high mechanical strength. Polymer-Plastics Technology and Materials, 2020. 59(17): p. 1899-1909.
    29. Li, J., et al., Hofmeister Effect Mediated Strong PHEMA-Gelatin Hydrogel Actuator. ACS Appl Mater Interfaces, 2022.
    30. Collins, K.D., Ions from the Hofmeister series and osmolytes: effects on proteins in solution and in the crystallization process. Methods, 2004. 34(3): p. 300-11.
    31. Kunz, W., J. Henle, and B.W. Ninham, ‘Zur Lehre von der Wirkung der Salze’(about the science of the effect of salts): Franz Hofmeister's historical papers. Current Opinion in Colloid & Interface Science, 2004. 9(1-2): p. 19-37.
    32. Jungwirth, P. and P.S. Cremer, Beyond Hofmeister. Nat Chem, 2014. 6(4): p. 261-3.
    33. Kunz, W., Specific ion effects. 2010: World Scientific.
    34. Nihonyanagi, S., S. Yamaguchi, and T. Tahara, Counterion effect on interfacial water at charged interfaces and its relevance to the Hofmeister series. Journal of the American Chemical Society, 2014. 136(17): p. 6155-6158.
    35. Robinson, R.A. and R.H. Stokes, Electrolyte solutions. 2002: Courier Corporation.
    36. Vlachy, N., et al., Hofmeister series and specific interactions of charged headgroups with aqueous ions. Adv Colloid Interface Sci, 2009. 146(1-2): p. 42-7.
    37. Xie, W.J. and Y.Q. Gao, A simple theory for the Hofmeister series. The journal of physical chemistry letters, 2013. 4(24): p. 4247-4252.
    38. Hanani, Z.A.N., Gelatin, in Encyclopedia of Food and Health, B. Caballero, P.M. Finglas, and F. Toldrá, Editors. 2016, Academic Press: Oxford. p. 191-195.
    39. Leberfinger, A.N., et al., Concise Review: Bioprinting of Stem Cells for Transplantable Tissue Fabrication. Stem Cells Transl Med, 2017. 6(10): p. 1940-1948.
    40. Akhtar, M.F., M. Hanif, and N.M. Ranjha, Methods of synthesis of hydrogels ... A review. Saudi Pharm J, 2016. 24(5): p. 554-559.
    41. Soppimath, K.S., et al., Stimulus-responsive “smart” hydrogels as novel drug delivery systems. Drug development and industrial pharmacy, 2002. 28(8): p. 957-974.
    42. Qiu, Y. and K. Park, Environment-sensitive hydrogels for drug delivery. Adv Drug Deliv Rev, 2001. 53(3): p. 321-39.
    43. Zhang, A., et al., Research status of self-healing hydrogel for wound management: A review. Int J Biol Macromol, 2020. 164: p. 2108-2123.
    44. Fan, L., et al., Advances in Synthesis and Applications of Self-Healing Hydrogels. Front Bioeng Biotechnol, 2020. 8: p. 654.
    45. George, J., et al., Neural tissue engineering with structured hydrogels in CNS models and therapies. Biotechnol Adv, 2020. 42: p. 107370.
    46. Alipal, J., et al., A review of gelatin: Properties, sources, process, applications, and commercialisation. Materials Today: Proceedings, 2021. 42: p. 240-250.
    47. Lu, Y., et al., Application of Gelatin in Food Packaging: A Review. Polymers (Basel), 2022. 14(3).
    48. Said, M.I. Role and function of gelatin in the development of the food and non-food industry: A review. IOP Publishing.
    49. Miyawaki, O., C. Omote, and K. Matsuhira, Thermodynamic analysis of sol-gel transition of gelatin in terms of water activity in various solutions. Biopolymers, 2015. 103(12): p. 685-91.
    50. Tanaka, N. and I. Utsumi, A Study of the Sol-Gel Transformation of Gelatin Solutions. Bulletin of the Chemical Society of Japan, 1963. 36(1): p. 63-66.
    51. Kawabe, S., M. Seki, and H. Tabata, Investigation of the sol-gel transition of gelatin using terahertz time-domain spectroscopy. Journal of Applied Physics, 2014. 115(14): p. 143103.
    52. Kouguchi, T., Y. Zhang, and M. Sato. Triple helix Denaturation Digestion Collagen Gelatin Collagen peptides Heat treatment Enzymatic digestion. 2017.
    53. Hazards, E.P.o.B., et al., Potential BSE risk posed by the use of ruminant collagen and gelatine in feed for non‐ruminant farmed animals. EFSA Journal, 2020. 18(10): p. e06267.
    54. Bello, A.B., et al., Engineering and Functionalization of Gelatin Biomaterials: From Cell Culture to Medical Applications. Tissue Eng Part B Rev, 2020. 26(2): p. 164-180.
    55. Hellio, D. and M. Djabourov, Chemically and physically cross-linked gelatin gels. Langmuir, 2002. 18: p. 7158.
    56. Aramwit, P., et al., A comparative study of type A and type B gelatin nanoparticles as the controlled release carriers for different model compounds. Materials Express, 2015. 5(3): p. 241-248.
    57. Baydin, T., et al., Long-term storage stability of type A and type B gelatin gels: The effect of Bloom strength and co-solutes. Food Hydrocolloids, 2022. 127: p. 107535.
    58. Madl, C.M., L.M. Katz, and S.C. Heilshorn, Bio-Orthogonally Crosslinked, Engineered Protein Hydrogels with Tunable Mechanics and Biochemistry for Cell Encapsulation. Adv Funct Mater, 2016. 26(21): p. 3612-3620.
    59. Wang, E., S.H. Lee, and S.W. Lee, Elastin-like polypeptide based hydroxyapatite bionanocomposites. Biomacromolecules, 2011. 12(3): p. 672-80.
    60. Zhang, Y.N., et al., A Highly Elastic and Rapidly Crosslinkable Elastin-Like Polypeptide-Based Hydrogel for Biomedical Applications. Adv Funct Mater, 2015. 25(30): p. 4814-4826.
    61. Jin, S., et al., A baicalin-loaded coaxial nanofiber scaffold regulated inflammation and osteoclast differentiation for vascularized bone regeneration. Bioact Mater, 2022. 8: p. 559-572.
    62. Xu, L., et al., Conjoined-network rendered stiff and tough hydrogels from biogenic molecules. Sci Adv, 2019. 5(2): p. eaau3442.
    63. Tang, L., et al., High toughness fully physical cross-linked double network organohydrogels for strain sensors with anti-freezing and anti-fatigue properties. Materials Advances, 2021. 2(20): p. 6655-6664.
    64. Jakubowski, H., Biochemistry online: an approach based on chemical logic. 2003: College of St. Benedict, St. John's University.
    65. Kang, B., et al., Hofmeister Series: Insights of Ion Specificity from Amphiphilic Assembly and Interface Property. ACS Omega, 2020. 5(12): p. 6229-6239.
    66. Zhang, Y. and P.S. Cremer, Interactions between macromolecules and ions: the Hofmeister series. Current opinion in chemical biology, 2006. 10(6): p. 658-663.
    67. Kunz, W., Specific ion effects in colloidal and biological systems. Current Opinion in Colloid & Interface Science, 2010. 15(1-2): p. 34-39.
    68. Manciu, M. and E. Ruckenstein, Specific ion effects via ion hydration: I. Surface tension. Adv Colloid Interface Sci, 2003. 105(1-3): p. 63-101.
    69. Okur, H.I., et al., Beyond the Hofmeister series: Ion-specific effects on proteins and their biological functions. The Journal of Physical Chemistry B, 2017. 121(9): p. 1997-2014.
    70. Yu, J., et al., Microneedle-array patches loaded with hypoxia-sensitive vesicles provide fast glucose-responsive insulin delivery. Proc Natl Acad Sci U S A, 2015. 112(27): p. 8260-5.
    71. Kim, Y.C., J.H. Park, and M.R. Prausnitz, Microneedles for drug and vaccine delivery. Adv Drug Deliv Rev, 2012. 64(14): p. 1547-68.
    72. Bhatnagar, S., et al., Dissolvable microneedle patch containing doxorubicin and docetaxel is effective in 4T1 xenografted breast cancer mouse model. Int J Pharm, 2019. 556: p. 263-275.
    73. Ye, Y., et al., Polymeric microneedles for transdermal protein delivery. Adv Drug Deliv Rev, 2018. 127: p. 106-118.
    74. Rzhevskiy, A.S., et al., Microneedles as the technique of drug delivery enhancement in diverse organs and tissues. J Control Release, 2018. 270: p. 184-202.
    75. Cahill, E.M., et al., Metallic microneedles with interconnected porosity: A scalable platform for biosensing and drug delivery. Acta Biomater, 2018. 80: p. 401-411.
    76. Li, J., et al., Fabrication of a Ti porous microneedle array by metal injection molding for transdermal drug delivery. PLoS One, 2017. 12(2): p. e0172043.
    77. Boks, M.A., et al., Controlled release of a model vaccine by nanoporous ceramic microneedle arrays. Int J Pharm, 2015. 491(1-2): p. 375-83.
    78. van der Maaden, K., W. Jiskoot, and J. Bouwstra, Microneedle technologies for (trans)dermal drug and vaccine delivery. J Control Release, 2012. 161(2): p. 645-55.
    79. Mohan, A.M.V., et al., Continuous minimally-invasive alcohol monitoring using microneedle sensor arrays. Biosens Bioelectron, 2017. 91: p. 574-579.
    80. El-Laboudi, A., et al., Use of microneedle array devices for continuous glucose monitoring: a review. Diabetes Technol Ther, 2013. 15(1): p. 101-15.
    81. Teo, M.A., et al., In vitro and in vivo characterization of MEMS microneedles. Biomed Microdevices, 2005. 7(1): p. 47-52.
    82. Zhang, P., C. Dalton, and G.A. Jullien, Design and fabrication of MEMS-based microneedle arrays for medical applications. Microsystem technologies, 2009. 15(7): p. 1073-1082.
    83. Wang, M., L. Hu, and C. Xu, Recent advances in the design of polymeric microneedles for transdermal drug delivery and biosensing. Lab Chip, 2017. 17(8): p. 1373-1387.
    84. Kim, J.D., et al., Droplet-born air blowing: novel dissolving microneedle fabrication. J Control Release, 2013. 170(3): p. 430-6.
    85. Lee, K.J., et al., Perivascular biodegradable microneedle cuff for reduction of neointima formation after vascular injury. J Control Release, 2014. 192: p. 174-81.
    86. Choi, C.K., et al., Spatially discrete thermal drawing of biodegradable microneedles for vascular drug delivery. Eur J Pharm Biopharm, 2013. 83(2): p. 224-33.
    87. Lee, I.C., et al., Formulation of two-layer dissolving polymeric microneedle patches for insulin transdermal delivery in diabetic mice. J Biomed Mater Res A, 2017. 105(1): p. 84-93.
    88. Chen, S., et al., Smart Microneedle Fabricated with Silk Fibroin Combined Semi-interpenetrating Network Hydrogel for Glucose-Responsive Insulin Delivery. ACS Biomater Sci Eng, 2019. 5(11): p. 5781-5789.
    89. Aykaç, K. and E. Başaran, Formulation and Characterization of Lacosamide-loaded Polymeric Microneedles. Journal of Exploratory Research in Pharmacology, 2022(000): p. 0-0.
    90. Tucak, A., et al., Microneedles: Characteristics, Materials, Production Methods and Commercial Development. Micromachines (Basel), 2020. 11(11): p. 961.
    91. Gibb, C.L. and B.C. Gibb, Anion binding to hydrophobic concavity is central to the salting-in effects of Hofmeister chaotropes. Journal of the American Chemical Society, 2011. 133(19): p. 7344-7347.
    92. Hyde, A.M., et al., General principles and strategies for salting-out informed by the Hofmeister series. Organic Process Research & Development, 2017. 21(9): p. 1355-1370.
    93. Schwierz, N. and R.R. Netz, Effective interaction between two ion-adsorbing plates: Hofmeister series and salting-in/salting-out phase diagrams from a global mean-field analysis. Langmuir, 2012. 28(8): p. 3881-3886.
    94. Qiao, C., et al., Influence of salts in the Hofmeister series on the physical gelation behavior of gelatin in aqueous solutions. Food Hydrocolloids, 2021. 110: p. 106150.
    95. Lowenberg, C., et al., Salt-Induced Shape-Memory Effect in Gelatin-Based Hydrogels. Biomacromolecules, 2020. 21(6): p. 2024-2031.
    96. Mel'Nichenko, Y.B., et al., On the nature of junction zones in gelatin gels. Polymer International, 1991. 25(3): p. 153-157.
    97. Hermel, H., et al., Structure and brittleness of getalin layers. Journal of imaging science, 1991. 35(2): p. 87-89.
    98. Hermel, H., et al., Moisture, triple-helical content and brittleness of gelatin layers. The Journal of Photographic Science, 1991. 39(1): p. 16-18.
    99. Liu, C., et al., Electrically conductive tough gelatin hydrogel. Advanced Electronic Materials, 2020. 6(4): p. 2000040.
    100. Lee, I.-C., et al., Fabrication of two-layer dissolving polyvinylpyrrolidone microneedles with different molecular weights for in vivo insulin transdermal delivery. Rsc Advances, 2017. 7(9): p. 5067-5075.
    101. Aldawood, F.K., A. Andar, and S. Desai, A Comprehensive Review of Microneedles: Types, Materials, Processes, Characterizations and Applications. Polymers (Basel), 2021. 13(16): p. 2815.
    102. Liu, G.S., et al., Microneedles for transdermal diagnostics: Recent advances and new horizons. Biomaterials, 2020. 232: p. 119740.

    無法下載圖示 全文公開日期 2033/01/07 (校內網路)
    全文公開日期 2033/01/07 (校外網路)
    全文公開日期 2033/01/07 (國家圖書館:臺灣博碩士論文系統)
    QR CODE