簡易檢索 / 詳目顯示

研究生: 余慧耀
Anthony Iskandar
論文名稱: 無機聚合物混凝土簡化配比設計方法
A Simplified Mix Proportion Design Method of Geopolymer Concrete
指導教授: 張大鵬
Ta-Peng Chang
口試委員: 施正元
Jeng-Ywan Shih
陳君弢
Chun-Tao Chen
楊仲家
Chung-Chia Yang
李有豐
Yeou-Fong Li
學位類別: 碩士
Master
系所名稱: 工程學院 - 營建工程系
Department of Civil and Construction Engineering
論文出版年: 2020
畢業學年度: 108
語文別: 英文
論文頁數: 123
中文關鍵詞: 無機聚合物混凝土配比設計抗壓強度F級飛灰水淬高爐石粉鹼活化劑
外文關鍵詞: geopolymer concrete, mix design, compressive strength, class F fly ash, ground granulated blast furnace slag, alkaline activator
相關次數: 點閱:259下載:1
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 無機聚合物混凝土作為一種新型建築材料,具有許多影響其工程性能的因素。作為混凝土主要特徵的抗壓強度通常是設計混凝土配合比設計的重點,而與其他新拌和硬固性能無關。 F級飛灰和水淬高爐石粉作為常用的鋁矽酸鹽原料,具有各自的優缺點。因此,將它們靈活的結合在膠結體系中將是生成無機聚合物混凝土混合料比例方法。鹼活化劑中的鈉含量也被認為是重要的因素,它將影響抗壓強度以及水膠比含量。
    在生產無機聚合物混凝土時,還需要考慮其他因素,因此,為了建立簡化的混合比設計方法,需要對這些因素進行一些限制。矽酸鈉溶液的模數固定為2.0,氫氧化鈉溶液的莫耳濃度固定為10 M,矽酸鈉與氫氧化鈉的重量比為2,漿體體積固定為33%。通過一系列完整的配合,建立了一種新的無機聚合物混凝土配比設計方法,並給出了流程圖和實例進行說明。簡化的配比設計方法可用於建立28天抗壓強度為5-70 MPa的無機聚合物混凝土。
    除了抗壓強度為主要重點外,還進行了綜合測試以研究其新拌和硬固之混凝土。新拌性質之研究包括坍度,坍流度和凝結時間。硬固性質之研究包含電阻值,超音波波速,熱傳導係數,重量特性和顯色性。並使用掃描電子顯微鏡圖像觀察混凝土的微觀結構。


    Geopolymer concrete as a novel construction material has many factors that influence its engineering properties. Compressive strength as the main character in concrete is usually a focal point in designing a concrete mix design, without regardless of the other fresh and hardened properties. Class F fly ash and ground granulated blast furnace slag as the commonly used aluminosilicates material source have their advantage and disadvantage values. Thus combining them in a binder system will be a flexible score in generating a geopolymer concrete mix proportion. Sodium content in the alkali activator is also considered as an important factor that will affect compressive strength as well as water-to-binder content ratio.
    There are also other factors that need to be considered in producing geopolymer concrete, therefore some restrain of those factors need to be placed in order to establish a simplified mix proportion design method. The sodium silicate solution modulus was fixed at 2.0, the sodium hydroxide solution molarity was fixed at 10 M, the sodium silicate to sodium hydroxide weight ratio was 2, and the paste volume was fixed at 33%. Through a complete series of mixes, a new approach of geopolymer concrete mix proportion design method was established and presented with a flowchart procedure and example to illustrate it. The simplified mix proportion design method can be employed to create a geopolymer concrete with a 28-day compressive strength of 5-70 MPa.
    Besides the compressive strength as the main focal point, comprehensive tests were conducted to investigate its fresh and hardened concrete properties. Fresh state properties including slump, slump flow, and setting time were investigated. While the hardened state properties such as electrical resistivity, ultrasonic pulse velocity, thermal conductivity, weight properties and color development were tested. The microstructure of the concretes was also examined through scanning electron microscopy images.

    摘要 ........................................................................................................................................ i Abstract ................................................................................................................................ iii Acknowledgements ............................................................................................................... v Table of Contents ................................................................................................................ vii List of Symbols and Abbreviations ...................................................................................... xi List of Tables ....................................................................................................................... xv List of Figures .................................................................................................................... xvii Chapter 1 Introduction ........................................................................................................... 1 1.1 Background ............................................................................................................ 1 1.2 Objectives and scope of the research ..................................................................... 3 1.3 Research outline .................................................................................................... 3 Chapter 2 Literature Review ................................................................................................. 5 2.1 Introduction to geopolymer concrete ..................................................................... 5 2.2 Class F fly ash (FFA) as a precursor in geopolymer concrete............................... 5 2.2.1 Class F fly ash (FFA) formation ............................................................. 6 2.2.2 Class F fly ash (FFA) as a pozzolanic material ...................................... 6 2.3 GGBFS as a precursor in geopolymer concrete .................................................... 7 2.3.1 GGBFS formation ................................................................................... 7 2.3.2 GGBFS activation by alkaline solution .................................................. 8 2.3.3 Alkali activators significance .................................................................. 9 2.4 Geopolymer concrete mix proportion design method development ................... 10 2.5 Influencing factors of geopolymer concrete compressive strength ..................... 11 2.6 GGBFS-incorporated concrete color development ............................................. 12 Chapter 3 Experimental Program ........................................................................................ 23 3.1 Material properties ............................................................................................... 23 3.1.1 Class F fly ash (FFA) ............................................................................ 23 3.1.2 Ground granulated blast furnace slag (GGBFS) ................................... 23 3.1.3 Fine and coarse aggregate ..................................................................... 23 3.1.4 Alkaline activators ................................................................................ 24 3.2 Mixture proportion design of geopolymer concrete ............................................ 25 3.2.1 Variables and parameters ...................................................................... 25 3.2.2 Mixing procedure and curing conditions .............................................. 28 3.3 Testing methods ................................................................................................... 29 3.3.1 Fresh properties testing methods .......................................................... 29 3.3.2 Hardened properties testing methods .................................................... 29 3.3.2.1 Compressive strength test ....................................................... 29 3.3.2.2 Electrical resistivity test .......................................................... 30 3.3.2.3 Ultrasonic pulse velocity (UPV) test ...................................... 30 3.3.2.4 Thermal conductivity test ....................................................... 31 3.3.2.5 Scanning electron microscopy examination ........................... 31 3.3.2.6 Photograph examination ......................................................... 31 Chapter 4 Simplified Mix Proportion .................................................................................. 47 4.1 Mix proportion design method ............................................................................ 47 Chapter 5 Results and Discussion ....................................................................................... 55 5.1 Workability of fresh concrete .............................................................................. 55 5.2 Hardened properties of geopolymer concrete ...................................................... 57 5.2.1 Compressive strength characteristic ..................................................... 57 ix 5.2.2 Electrical resistivity characteristic ........................................................ 57 5.2.3 Ultrasonic pulse velocity characteristic ................................................ 58 5.2.4 Thermal conductivity characteristic ...................................................... 59 5.2.5 Weight density characteristic ................................................................ 60 5.2.6 Microstructural investigation ................................................................ 61 5.2.7 Compressive strength verification ........................................................ 61 5.3 Verification of simplified mix proportion design method ................................... 62 Chapter 6 Conclusions and Suggestions .............................................................................. 91 6.1 Conclusion ........................................................................................................... 91 6.2 Suggestion ........................................................................................................... 92 References ........................................................................................................................... 93

    [1] ASTM International, ASTM C143-15, Standard Test Method for Slump of Hydraulic-Cement Concrete, West Conshohocken, PA, (2015)
    [2] ASTM International, ASTM C403-16, Standard Test Method for Time of Setting of Concrete Mixtures by Penetration Resistance, West Conshohocken, PA, (2016)
    [3] ASTM International, ASTM C618-19, Standard Specification for Coal Fly Ash and Raw or Calcined Natural Pozzolan for Use in Concrete, West Conshohocken, PA, (2019)
    [4] ASTM International, ASTM C39-20, Standard Test Method for Compressive Strength of Cylindrical Concrete Specimens, West Conshohocken, PA, (2020)
    [5] ASTM International, ASTM C109-20, Standard Test Method for Compressive Strength of Hydraulic Cement Mortars (Using 2-in. or [50-mm] Cube Specimens), West Conshohocken, PA, (2020)
    [6] Assi, L. N., E. Eddie Deaver, P. Ziehl. Effect of source and particle size distribution on the mechanical and microstructural properties of fly Ash-Based geopolymer concrete. Construction and Building Materials. 167: p. 372-380. (2018)
    [7] Bondar, D., Q. Ma, M. Soutsos, M. Basheer, J. L. Provis, S. Nanukuttan. Alkali activated slag concretes designed for a desired slump, strength and chloride diffusivity. Construction and Building Materials. 190: p. 191-199. (2018)
    [8] Bondar, D., S. Nanukuttan, J. L. Provis, M. Soutsos. Efficient mix design of alkali activated slag concretes based on packing fraction of ingredients and paste thickness. Journal of Cleaner Production. 218: p. 438-449. (2019)
    [9] Chaouche, M., X. X. Gao, M. Cyr, M. Cotte, L. Frouin. On the origin of the blue/green color of blast-furnace slag-based materials: Sulfur K-edge XANES
    investigation. Journal of the American Ceramic Society. 100 (4): p. 1707-1716. (2017)
    [10] Couvidat, J., C. Diliberto, E. Meux, L. Izoret, A. Lecomte. Greening effect of concrete containing granulated blast-furnace slag composite cement: Is there an environmental impact? Cement and Concrete Composites. 113: p. (2020)
    [11] Davidovits, J. Geopolymer Chemistry and Applications. Geopolymer Institute, (2008)
    [12] Djayaprabha, H. S., T.-P. Chang, J.-Y. Shih, H.-A. Nguyen. Improving the Mechanical and Durability Performance of No-Cement Self-Compacting Concrete by Fly Ash. Journal of Materials in Civil Engineering. 32 (9): p. (2020)
    [13] Duxson, P., A. Fernández-Jiménez, J. L. Provis, G. C. Lukey, A. Palomo, J. S. J. van Deventer. Geopolymer technology: the current state of the art. Journal of Materials Science. 42 (9): p. 2917-2933. (2007)
    [14] Duxson, P., J. L. Provis, G. C. Lukey, J. S. J. van Deventer. The role of inorganic polymer technology in the development of ‘green concrete’. Cement and Concrete Research. 37 (12): p. 1590-1597. (2007)
    [15] El-Yamany, H. E., M. A. El-Salamawy, N. T. El-Assal. Microstructure and mechanical properties of alkali-activated slag mortar modified with latex. Construction and Building Materials. 191: p. 32-38. (2018)
    [16] Hadi, M. N. S., N. A. Farhan, M. N. Sheikh. Design of geopolymer concrete with GGBFS at ambient curing condition using Taguchi method. Construction and Building Materials. 140: p. 424-431. (2017)
    [17] Hadi, M. N. S., H. Zhang, S. Parkinson. Optimum mix design of geopolymer pastes and concretes cured in ambient condition based on compressive strength, setting time and workability. Journal of Building Engineering. 23: p. 301-313. (2019)
    [18] Hassan, A., M. Arif, M. Shariq. Use of geopolymer concrete for a cleaner and sustainable environment – A review of mechanical properties and microstructure. Journal of Cleaner Production. 223: p. 704-728. (2019)
    [19] Huseien, G. F., K. W. Shah. Durability and life cycle evaluation of self-compacting concrete containing fly ash as GBFS replacement with alkali activation. Construction and Building Materials. 235: p. (2020)
    [20] Keke, S., P. Xiaoqin, W. Shuping, Z. Lu. Design method for the mix proportion of geopolymer concrete based on the paste thickness of coated aggregate. Journal of Cleaner Production. 232: p. 508-517. (2019)
    [21] Kuehl, H., Slag cement and process of making the same, US900939A. (1907)
    [22] Li, N., C. Shi, Z. Zhang, H. Wang, Y. Liu. A review on mixture design methods for geopolymer concrete. Composites Part B: Engineering. 178: p. 107490. (2019)
    [23] Li, N., C. Shi, Z. Zhang, D. Zhu, H.-J. Hwang, Y. Zhu, T. Sun. A mixture proportioning method for the development of performance-based alkali-activated slag-based concrete. Cement and Concrete Composites. 93: p. 163-174. (2018)
    [24] Lokuge, W., A. Wilson, C. Gunasekara, D. W. Law, S. Setunge. Design of fly ash geopolymer concrete mix proportions using Multivariate Adaptive Regression Spline model. Construction and Building Materials. 166: p. 472-481. (2018)
    [25] Lothenbach, B., K. Scrivener, R. D. Hooton. Supplementary cementitious materials. Cement and Concrete Research. 41 (12): p. 1244-1256. (2011)
    [26] Mangat, P., P. Lambert, "Sustainability of alkali-activated cementitious materials and geopolymers," pp 459-476, (2016)
    [27] Naghizadeh, A., S. O. Ekolu. Method for comprehensive mix design of fly ash geopolymer mortars. Construction and Building Materials. 202: p. 704-717. (2019)
    [28] Nath, P., P. K. Sarker. Effect of GGBFS on setting, workability and early strength properties of fly ash geopolymer concrete cured in ambient condition. Construction and Building Materials. 66: p. 163-171. (2014)
    [29] Patankar, S. V. Effect of Water-to-Geopolymer Binder Ratio on the Production of Fly ash Based Geopolymer Concrete. International Journal of Advanced Technology in Civil Engineering. 2 (1): p. (2013)
    [30] Patankar, S. V., Y. M. Ghugal, S. S. Jamkar. Mix Design of Fly Ash Based Geopolymer Concrete. Springer India. (2015)
    [31] Pavithra, P., M. Srinivasula Reddy, P. Dinakar, B. Hanumantha Rao, B. K. Satpathy, A. N. Mohanty. A mix design procedure for geopolymer concrete with fly ash. Journal of Cleaner Production. 133: p. 117-125. (2016)
    [32] Phoo-ngernkham, T., A. Maegawa, N. Mishima, S. Hatanaka, P. Chindaprasirt. Effects of sodium hydroxide and sodium silicate solutions on compressive and shear bond strengths of FA–GBFS geopolymer. Construction and Building Materials. 91: p. 1-8. (2015)
    [33] Phoo-Ngernkham, T., C. Phiangphimai, N. Damrongwiriyanupap, S. Hanjitsuwan, J. Thumrongvut, P. Chindaprasirt. A Mix Design Procedure for Alkali-Activated High-Calcium Fly Ash Concrete Cured at Ambient Temperature. Advances in Materials Science and Engineering. 2018: p. 1-13. (2018)
    [34] Provis, J. L. Geopolymers and other alkali activated materials: why, how, and what? Materials and Structures. 47 (1-2): p. 11-25. (2013)
    [35] Provis, J. L., A. Palomo, C. Shi. Advances in understanding alkali-activated materials. Cement and Concrete Research. 78: p. 110-125. (2015)
    [36] Provis, J. L., J. S. J. Van Deventer. Geopolymers : structure, processing, properties and industrial applications. Oxford, Boca Raton, FL, Woodhead ; CRC Press, (2009)
    [37] Puertas, F., S. Martı́nez-Ramı́rez, S. Alonso, T. Vázquez. Alkali-activated fly ash/slag cements: Strength behaviour and hydration products. Cement and Concrete Research. 30 (10): p. 1625-1632. (2000)
    [38] Purdon, A. O. The action of alkalis on blast furnace slag. Journal of the Society of Chemical Industry. 59: p. 191-202. (1940)
    [39] Rafeet, A., R. Vinai, M. Soutsos, W. Sha. Guidelines for mix proportioning of fly ash/GGBS based alkali activated concretes. Construction and Building Materials. 147: p. 130-142. (2017)
    [40] Rafeet, A., R. Vinai, M. Soutsos, W. Sha. Effects of slag substitution on physical and mechanical properties of fly ash-based alkali activated binders (AABs). Cement and Concrete Research. 122: p. 118-135. (2019)
    [41] Rangan, B. V., S. E. Wallah. Low-calcium fly ash-based geopolymer concrete long term properties. p. (2006)
    [42] Reddy, M. S., P. Dinakar, B. H. Rao. Mix design development of fly ash and ground granulated blast furnace slag based geopolymer concrete. Journal of Building Engineering. 20: p. 712-722. (2018)
    [43] Shariq, M., J. Prasad, A. Masood. Studies in ultrasonic pulse velocity of concrete containing GGBFS. Construction and Building Materials. 40: p. 944-950. (2013)
    [44] Siddique, R., M. I. Khan. Supplementary Cementing Materials. Springer-Verlag, Berlin, Heidelberg, (2011)
    [45] Soutsos, M., A. P. Boyle, R. Vinai, A. Hadjierakleous, S. J. Barnett. Factors influencing the compressive strength of fly ash based geopolymers. Construction and Building Materials. 110: p. 355-368. (2016)
    [46] Stefanidou, M., M. Assael, K. Antoniadis, G. Matziaroglou. Thermal Conductivity of Building Materials Employed in the Preservation of Traditional Structures. International Journal of Thermophysics. 31 (4-5): p. 844-851. (2010)
    [47] Talha Junaid, M., O. Kayali, A. Khennane, J. Black. A mix design procedure for low calcium alkali activated fly ash-based concretes. Construction and Building Materials. 79: p. 301-310. (2015)
    [48] Temuujin, J., A. Minjigmaa, U. Bayarzul, T. Zolzaya, B. Davaabal, J. Amgalan. Fundamentals of Geopolymers and Related Alkali Activated Materials. Materials Science Forum. 803: p. 144-147. (2014)
    [49] Teng, S., T. Y. D. Lim, B. Sabet Divsholi. Durability and mechanical properties of high strength concrete incorporating ultra fine Ground Granulated Blast-furnace Slag. Construction and Building Materials. 40: p. 875-881. (2013)
    [50] Woo, H.-M., C.-Y. Kim, J. H. Yeon. Heat of hydration and mechanical properties of mass concrete with high-volume GGBFS replacements. Journal of Thermal Analysis and Calorimetry. 132 (1): p. 599-609. (2017)
    [51] Yazdi, M. A., M. Liebscher, S. Hempel, J. Yang, V. Mechtcherine. Correlation of microstructural and mechanical properties of geopolymers produced from fly ash and slag at room temperature. Construction and Building Materials. 191: p. 330-341. (2018)

    QR CODE