簡易檢索 / 詳目顯示

研究生: 陳亭吟
Ting-Yin Chen
論文名稱: 理論計算於微量水對於鋰離子電池中碳酸丙烯酯氧化分解機制效應的研究
Theoretical Insights into the Effects of Water on the Oxidative Decomposition of Propylene Carbonate in Lithium Ion Batteries
指導教授: 江志強
Jyh-Chiang Jiang
口試委員: 蔡明剛
Ming-Kang Tsai
王復民
Fu-Ming Wang
學位類別: 碩士
Master
系所名稱: 工程學院 - 化學工程系
Department of Chemical Engineering
論文出版年: 2015
畢業學年度: 103
語文別: 英文
論文頁數: 70
中文關鍵詞: 鋰離子電池微量水碳酸丙烯酯氧化分解
外文關鍵詞: lithium ion battery, water, propylene carbonate, oxidative decomposition
相關次數: 點閱:250下載:6
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 鋰離子電池具有體積小、工作電位廣且無記憶效應的優點,被廣泛應用在便於攜帶的電子產品,且充電速度快、能量密度大及環保等特性,使其在電動車的電源供應上受到重視。但其仍存在著安全性問題,有待改善。碳酸丙烯酯 (Propylene carbonate, PC) 及六氟磷酸鋰 (Lithium hexafluorophosphate, LiPF6) 為常用的電解液組成,正極材料及六氟磷酸鋰具高吸濕性,水分子會促使氫氟酸 (HF)的生成,進而腐蝕正極材料,使電池衰退速度加快。因此,水分子在氧化分解機構中,所扮演的角色值得探討。
    此研究利用理論計算軟體 Gaussian09 中的密度泛函理論(Density Functional Theory, DFT),計算不同系統的最佳結構,比較其氧化電位及吉布斯自由能 (Gibbs Free Energy) 等性質,所有計算皆考慮溶劑效應;同時,亦使用計算軟體VASP,進行第一原理分子動力學(Ab-initio MD) 的模擬,來探討水分子在系統中,與其它組成的作用力方式。從Ab-initio MD的計算結果,發現不同時間點的計算結構,與DFT的計算結構相似,確認DFT的計算結構合理。最後進一步探討PC的氧化分解機構,了解水分子如何影響PC分解。我們發現水分子的涉入,會大幅降低PC的氧化電位,使系統更容易產生二氧化碳,對鋰離子電池的性能,具有負面影響。計算結果顯示丙酮自由基及丙醛自由基為初步產物,最終會得到丙酮、丙醛及聚碳酸酯等,這些產物皆已在實驗上被觀測到。


    Lithium-ion rechargeable batteries are widely used in portable electronic devices as compared to the conventional batteries due to their high energy density and good environmental properties. However, there are still many challenges concerning the safety requirements. Propylene carbonate (PC) and lithium hexafluorophosphate (LiPF6) have been extensively studied as electrolyte compositions for lithium ion battery. At open-circuit voltage and during cell charging, the high potentials of several cathode materials may result in electrolyte oxidation. These highly exothermic electrolyte decomposition reactions are usually accompanied by the decomposition of the cathode material and gas evolution that will cause potential danger and reduced cyclic stability. The presence of trace amount of water is also believed to enhance the electrolyte decomposition reactions.
    In this study, we investigate the oxidative decomposition mechanisms of PC/LiPF6 with water using density functional theory methods. The solvent effect is also included using the implicit solvation model with density method. Based on the calculation, there is a significant difference in the oxidative decomposition mechanism of [H2O-PC-PF6] - compared to [PC-PF6]-. For the [PC-PF6]-, HF is formed at the initial oxidation step; whereas, in [H2O-PC-PF6] - the elementary oxidation reactions, such as H3O+ formation and C-C bond-breaking happened depending on the position of water. The presence of H3O+ which could act as an acidic catalyst would accelerate the PC ring open process. The energy barrier for the ring-opening step of [PC-H2O-PF6] was found to be much lower than that of [PC-PF6]. Our calculations suggest that, the initial oxidative decomposition products of PC in the presence of water are acetone radical, propanal radical and carbon dioxide. We also performed the molecular dynamic simulations to confirm the results from DFT calculation.

    Abstract i 摘要 iii Acknowledgements iv Table of Contents v List of Figures vii List of tables x Chapter 1 Introduction 1 1.1 Lithium Ion Battery: Development and Applications 1 1.2 Working Principle of Lithium Ion Battery 3 1.3 Components of Lithium Ion Battery 4 1.3.1 Anode 4 1.3.2 Cathode 9 1.3.3 Electrolyte 13 1.4 The Role of water 20 1.5 Aim of this study 25 Chapter 2 Computational Details 27 2.1 DFT calculations 27 2.2 Molecular dynamic simulation 28 2.2.1 Classical molecular dynamics (MD) 28 2.2.2 Ab initio molecular dynamics simulations 28 2.3 Thermodynamic properties 29 Chapter 3 Results and Discussion 31 3.1 Stability of LiPF6 31 3.2 Reactivity of PF5 and the formation of HF 32 3.3 Initial structure of PC/H2O/PF6 anion systems 36 3.3.1 DFT calculations 36 3.3.2 Ab initio molecular dynamic simulation 40 3.4 Oxidative decomposition mechanism for PC in the presence of water 46 Chapter 4 Conclusion 51 References 52

    1. Elgowainy, A., et al., Energy efficiency and greenhouse gas emission intensity of petroleum products at U.S. refineries. Environ. Sci. Technol., 2014. 48(13): p. 7612-24.
    2. Gomez-Garcia, M.A., V. Pitchon, and A. Kiennemann, Pollution by nitrogen oxides: an approach to NO(x) abatement by using sorbing catalytic materials. Environ. Int., 2005. 31(3): p. 445-67.
    3. J., R.C., Environmental assessment of vanadium redox and lead-acid batteries for stationary energy storage. J. Power Sources, 1999. 80: p. 21-29.
    4. Freitas, M.B.J.G., T.R. Penha, and S. Sirtoli, Chemical and electrochemical recycling of the negative electrodes from spent Ni–Cd batteries. J. Power Sources, 2007. 163(2): p. 1114-1119.
    5. Lacerda, V.G., et al., Separation of Cd and Ni from Ni–Cd batteries by an environmentally safe methodology employing aqueous two-phase systems. J. Power Sources, 2009. 193(2): p. 908-913.
    6. Sakai, T., et al., Metal Hydride Anodes for Nickel-Hydrogen Secondary Battery. Journal of the Electrochemical Society, 1990. 137: p. 795-799.
    7. Ushirogata, K., et al., Additive Effect on Reductive Decomposition and Binding of Carbonate-Based Solvent toward Solid Electrolyte Interphase Formation in Lithium-Ion Battery. J. Amer. Chem. Soc. , 2013. 135(32): p. 11967-11974.
    8. Ufheil, J., et al., Acetone as oxidative decomposition product in propylene carbonate containing battery electrolyte. Electrochem. Commun. , 2005. 7(12): p. 1380-1384.
    9. Aurbach, D., et al., A short review of failure mechanisms of lithium metal and lithiated graphite anodes in liquid electrolyte solutions. Solid State Ionics, 2002. 148: p. 405-416.
    10. Takehara, Z.I., Future prospects of the lithium metal anode. J. Power Sources, 1997. 68: p. 82-86.
    11. SHIRaishi, S., K. Kanamura, and Z. Takehara, Effect of surface modification using various acids on electrodeposition of lithium. J. Appl. Electrochem., 1995. 25: p. 584-591.
    12. Endo, M., et al., Lithium storage behsvior for various kinds of carbon anodes in Li ion secondary battery. J. Phys. Chem. Solids, 1996. 57: p. 725-728.
    13. Aurbach, D., et al., Recent studies on the correlation between surface chemistry, morphology, three-dimensional structures and performance of Li and Li-C intercalation anodes in several important electrolyte systems. J. Power Sources, 1997. 68: p. 91-98.
    14. Ji, L., et al., Recent developments in nanostructured anode materials for rechargeable lithium-ion batteries. Energy & Environmental Science, 2011. 4(8): p. 2682.
    15. Kang, Y.M., et al., A study on the charge–discharge mechanism of Co3O4 as an anode for the Li ion secondary battery. Electrochim. Acta, 2005. 50(18): p. 3667-3673.
    16. Nohma, T., T. Saito, and N. Furukawa, Manganese oxides for a lithium secondary battery-composite dimensional manganese oxide (CDMO). J. Power Sources, 1989. 26: p. 389-396.
    17. Matsuta, S., et al., Electron-Spin-Resonance Study of the Reaction of Electrolytic Solutions on the Positive Electrode for Lithium-Ion Secondary Batteries. J. Electrochem. Soc. , 2001. 148(1): p. A7.
    18. Zhang, Y. and C.-Y. Wang, Cycle-Life Characterization of Automotive Lithium-Ion Batteries with LiNiO2 Cathode. J. Electrochem. Soc. , 2009. 156(7): p. A527.
    19. Myung, S.T., et al., Electrochemical behavior of current collectors for lithium batteries in non-aqueous alkyl carbonate solution and surface analysis by ToF-SIMS. Electrochim. Acta, 2009. 55(1): p. 288-297.
    20. Xia, H., et al., Phase Transitions and High-Voltage Electrochemical Behavior of LiCoO2 Thin Films Grown by Pulsed Laser Deposition. J. Electrochem. Soc., 2007. 154(4): p. A337.
    21. Wang, G., et al., An aqueous rechargeable lithium battery with good cycling performance. Angew Chem Int Ed Engl, 2007. 46(1-2): p. 295-7.
    22. Chen, Z., Z. Lu, and J.R. Dahn, Staging Phase Transitions in LixCoO2. J. Electrochem. Soc., 2002. 149(12): p. A1604.
    23. Shaari, H.R. and V. Sethuprakhash, Review of Electrochemical Performance of LiNiO2 and Their Derivatives as Cathode Material for Lithium-ion Batteries. J. Teknologi (Sciences & Engineering), 2014: p. 7-13.
    24. Palacín, M.R., et al., Thermal and moisture unstability of LiNiO2.
    25. Okada, M., Y.S. Lee, and M. Yoshio, Cycle characterizations of LiMxMn2-xO4 (M = Co, Ni) materials for lithium secondary battery at wide voltage region. J. Power Sources, 2000. 90.
    26. Goodenough, J.B. and K.S. Park, The Li-ion rechargeable battery: a perspective. J Am Chem Soc, 2013. 135(4): p. 1167-76.
    27. Ohzuku, T., M. Kitagawa, and T. Hirai, Electrochemistry of Manganese Dioxide in Lithium Nonaqueous Cell. J. Electrochem. Soc., 1990. 137: p. 769-775.
    28. Ling, G.W., et al., Structural and Thermal Stabilities of Spinel LiMn2O4 Materials Under Commercial Power Batteries Cycling and Abusive Conditions. Int. J. Electrochem. Sci., 2012. 7: p. 2455-2467.
    29. Yamada, A., et al., Olivine-type cathodes. J. Power Sources, 2003. 119-121: p. 232-238.
    30. Zhao, Y., et al., Single-crystalline LiFePO4 nanosheets for high-rate Li-ion batteries. Nano Lett, 2014. 14(5): p. 2849-53.
    31. Ogata, S., N. Ohba, and T. Kouno, Multi-Thousand-Atom DFT Simulation of Li-Ion Transfer through the Boundary between the Solid–Electrolyte Interface and Liquid Electrolyte in a Li-Ion Battery. J. Phys. Chem. C, 2013. 117(35): p. 17960-17968.
    32. Yoshino, A., The birth of the lithium-ion battery. Angew Chem Int Ed Engl, 2012. 51(24): p. 5798-800.
    33. Xu, K., M.S. Ding, and T.R. Jow, Quaternary Onium Salts as Nonaqueous Electrolytes for Electrochemical Capacitors. J. Electrochem. Soc., 2001. 148(3): p. A267.
    34. Fergus, J.W., Ceramic and polymeric solid electrolytes for lithium-ion batteries. J. Power Sources, 2010. 195(15): p. 4554-4569.
    35. Yamada, Y., et al., Unusual stability of acetonitrile-based superconcentrated electrolytes for fast-charging lithium-ion batteries. J Am Chem Soc, 2014. 136(13): p. 5039-46.
    36. Zhang, Z., et al., Fluorinated electrolytes for 5 V lithium-ion battery chemistry. Energ. Environ., 2013. 6(6): p. 1806.
    37. Shao, N., et al., Electrochemical windows of sulfone-based electrolytes for high-voltage Li-ion batteries. J. Phys. Chem. B, 2011. 115(42): p. 12120-5.
    38. Zhao, H., et al., Propylene Carbonate (PC)-Based Electrolytes with High Coulombic Efficiency for Lithium-Ion Batteries. J. Electrochem. Soc., 2013. 161(1): p. A194-A200.
    39. Shu, Z.X., et al., Use of Chloroethylene Carbonate as an Electrolyte Solvent for a Lithium Ion Battery Containing a Graphitic Anode. J. Electrochem. Soc., 1995. 142(9): p. L161-L162.
    40. Xing, L., et al., Density functional theory study of the role of anions on the oxidative decomposition reaction of propylene carbonate. J. Phys. Chem. A, 2011. 115(47): p. 13896-905.
    41. Zhang, L., Z.C. Zhang, and K. Amine, Redox Shuttle Additives for Lithium-Ion Battery
    42. Li, B., et al., Prop-1-ene-1,3-sultone as SEI formation additive in propylene carbonate-based electrolyte for lithium ion batteries. Electrochem. Commun., 2012. 17: p. 92-95.
    43. Li, J., et al., Effects of Vinyl Ethylene Carbonate Additive on Elevated-Temperature Performance of Cathode Material in Lithium Ion Batteries. J.of Phys. Chem. C, 2008. 112: p. 12550-12556.
    44. Borodin, O., W. Behl, and T.R. Jow, Oxidative Stability and Initial Decomposition Reactions of Carbonate, Sulfone, and Alkyl Phosphate-Based Electrolytes. J. Phys. Chem. C, 2013. 117(17): p. 8661-8682.
    45. Markovsky, B., et al., On the Electrochemical Behavior of Aluminum Electrodes in Nonaqueous Electrolyte Solutions of Lithium Salts. J. Electrochem. Soc., 2010. 157(4): p. A423.
    46. McOwen, D.W., et al., Anion Coordination Interactions in Solvates with the Lithium Salts LiDCTA and LiTDI. J. Phys. Chem. C, 2014. 118(15): p. 7781-7787.
    47. Shkrob, I.A., et al., Why Bis(fluorosulfonyl)imide Is a “Magic Anion” for Electrochemistry. J. Phys. Chem. C, 2014. 118(34): p. 19661-19671.
    48. Nishida, T., K. Nishikawa, and Y. Fukunaka, Diffusivity Measurement of LiPF6 , LiTFSI, LiBF4 in PC. J. Electrochem. Soc., 2008. 18: p. 1-14.
    49. Sloop, S.E., et al., Chemical Reactivity of PF5 and LiPF6 in Ethylene Carbonate/Dimethyl Carbonate Solutions. Electrochem. Solid-State Lett., 2001. 4(4): p. A42.
    50. Tasaki, K., et al., Decomposition of LiPF6 and stability of PF5 in Li-ion battery electrolytes - Density functional theory and molecular dynamics studies. J. Electrochem. Soc., 2003. 150(12): p. A1628-A1636.
    51. Takeuchi, M., et al., Free-energy and structural analysis of ion solvation and contact ion-pair formation of Li(+) with BF4(-) and PF6(-) in water and carbonate solvents. J. Phys. Chem. B, 2012. 116(22): p. 6476-87.
    52. Plakhotnyk, A.V., L. Ernst, and R. Schmutzler, Hydrolysis in the system LiPF6-propylene carbonate-dimethyl carbonate-H2O. J. Fluorine Chem., 2005. 126(1): p. 27-31.
    53. Gnanaraj, J.S., et al., A Detailed Investigation of the Thermal Reactions of LiPF6 Solution in Organic Carbonates Using ARC and DSC. J. Electrochem. Soc., 2003. 150(11): p. A1533.
    54. Chin-Shu, C., W. Fu-Ming, and R. John, Aqueous Additive for Lithium Ion Batteries: Promotes Novel Solid Electrolyte Interface (SEI) Layer with Overall Cost Reduction Int. J. Electrochem. Sci., 2012. 7: p. 8676-8687.
    55. Heider, U., R. Oesten, and M. Jungnitz, Challenge in manufacturing electrolyte solutions for lithium and lithium ion batteries quality control and minimizing contamination level. J. Power Sources 1999: p. 119-122.
    56. Li, W. and B.L. Lucht, Inhibition of the Detrimental Effects of Water Impurities in Lithium-Ion Batteries. Electrochem. Solid-State Lett., 2007. 10(4): p. A115.
    57. Aurbach, D., et al., A Comparative Study of Synthetic Graphite and Li Electrodes in Electrolyte Solutions Based on Ethylene Carbonate-Dimethyl Carbonate Mixtures. J. Electrochem. Soc., 1996. 143.
    58. Aurbach, D., et al., On the role of water contamination in rechargeable Li batteries. Electrochim. Acta, 1999. 45: p. 1135-1140.
    59. Dokko, K., et al., Microvoltammetry of lithium nickel oxide single particle: deterioration of the redox behavior by water molecules. Electrochem. Commun., 2000. 2: p. 717-719.
    60. Xing, L.D., et al., Theoretical Investigations on Oxidative Stability of Solvents and Oxidative Decomposition Mechanism of Ethylene Carbonate for Lithium Ion Battery Use. J. Phys. Chem. B, 2009. 113(52): p. 16596-16602.
    61. Leggesse, E.G., et al., Oxidative decomposition of propylene carbonate in lithium ion batteries: a DFT study. J. Phys. Chem. A, 2013. 117(33): p. 7959-69.
    62. Simeral, L. and R.L. Amey, Dielectric Properties of Liquid Propylene Carbonate. J. Phys. Chem., 1970. 74.
    63. M. J. Frisch, et al., Gaussian 09, Revision D.01. 2009, Gaussian, Inc.: Wallingford CT.
    64. Sun, H., COMPASS:  An ab Initio Force-Field Optimized for Condensed-Phase ApplicationsOverview with Details on Alkane and Benzene Compounds. The Journal of Physical Chemistry B, 1998. 102(38): p. 7338-7364.
    65. Kang, K., et al., Synthesis, Electrochemical Properties, and Phase Stability of Li2NiO2 with the Immm Structure. Chem. Mater., 2004. 16: p. 2685 - 2690.
    66. Blöchl, P.E., Projector augmented-wave method. Phys. Rev. B, 1994. 50(24): p. 17953-17979.
    67. Kawamura, T., S. Okada, and J. Yamaki, Decomposition reaction of LiPF6-based electrolytes for lithium ion cells. J. Power Sources, 2006. 156(2): p. 547-554.
    68. Saharan, V., et al., Moisture-uptake by the positive active material from the casting solvent and the ambient environment. J. Power Sources, 2005. 146(1-2): p. 809-812.
    69. Barlow, C.G., Reaction of Water with Hexafluorophosphates and with Li Bis(perfluoroethylsulfonyl)imide Salt. Electrochem. Solid-State Lett., 1999. 8(2): p. 362-364.
    70. Borodin, O., Polarizable Force Field Development and Molecular Dynamics Simulations of Ionic Liquids. The Journal of Physical Chemistry B, 2009. 113(33): p. 11463-11478.
    71. Leggesse, E.G., et al., Oxidative Decomposition of Propylene Carbonate in Lithium Ion Batteries: A DFT Study. The Journal of Physical Chemistry A, 2013. 117(33): p. 7959-7969.
    72. Ghatee, M.H. and A.R. Zolghadr, Local Depolarization in Hydrophobic and Hydrophilic Ionic Liquids/Water Mixtures: Car–Parrinello and Classical Molecular Dynamics Simulation. J. Phys. Chem. C, 2013. 117(5): p. 2066-2077.
    73. Gachot, G., et al., Gas Chromatography/Mass Spectrometry As a Suitable Tool for the Li-Ion Battery Electrolyte Degradation Mechanisms Study. Anal. Chem. , 2011. 83: p. 478-485.
    74. OLSHER, U., Coordination Chemistry of Lithium Ion: A Crystal and Molecular Structure Review. Chem. Rev., 1991: p. 137-164.
    75. Wang, H., et al., CO(2) and O(2) evolution at high voltage cathode materials of Li-ion batteries: a differential electrochemical mass spectrometry study. Anal Chem, 2014. 86(13): p. 6197-201.
    76. Xing, L., et al., Theoretical Insight into Oxidative Decomposition of Propylene Carbonate in the Lithium Ion Battery. J. Phys. Chem. B, 2009. 113: p. 5181–5187.
    77. Arakawa, M. and J.I. Yamaki, Anodic oxidation of propylene carbonate and ethylene carbonate on graphite electrodes. J. Power Sources, 1995. 54: p. 250-254.

    QR CODE