簡易檢索 / 詳目顯示

研究生: 張建賢
Chien-Hsien Chang
論文名稱: DEH-PPV-b-PEO團聯共聚物中分子特性與自組裝結構對光物理性質的影響
Effects of Molecular Characteristics and Self-Assembled Structures on Photophysical Properties of DEH-PPV-b-PEO Block Copolymers
指導教授: 胡孝光
Shiaw-Guang Hu
口試委員: 林唯芳
Wei-Fang Su
張鎮平
Chen-Pin Chang
陳良益
Liang-Yih Chen
戴 龑
Yian Tai
學位類別: 碩士
Master
系所名稱: 工程學院 - 材料科學與工程系
Department of Materials Science and Engineering
論文出版年: 2008
畢業學年度: 96
語文別: 中文
論文頁數: 98
中文關鍵詞: DEH-PPV-b-PEO光激發光量子效率自組裝
外文關鍵詞: DEH-PPV-b-PEO, PL quantum efficiency, self-assembly
相關次數: 點閱:240下載:5
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究藉由UV-Vis吸收光譜、光激發光光譜(PL)與時間解析光激發光光譜(TRPL)並結合Strickler-Berg equation計算出DEH-PPV-b-PEO系列團聯共聚物之光激發光量子效率,並經由光物理參數對聚合度倒數作圖所得的經驗式,探討分子鏈段聚合度與自組裝結構對DEH-PPV-b-PEO系列團聯共聚物之光物理性質的影響。最後利用偏光顯微鏡(POM)觀察DEH-PPV-b-PEO的自組裝結構,及對PEG與PLLA團聯共聚物的微胞化熱力學分析,探討PEO聚合度對兩類型團聯共聚物自組裝結構有序度的影響。
    為了探討光物理性質與高分子聚合度的關係,將最大發射強度處的光子能量、光激發光量子效率、輻射速率常數對共軛段分子﹙DEH-PPV﹚或非共軛段分子﹙PEO﹚聚合度的倒數(1/n 或1/m)作圖求得經驗方程式。觀察結果後發現,隨著共軛段分子﹙DEH-PPV﹚聚合度的增加,最大發射強度處的光子能量減少,光激發光量子效率下降,幅射速率常數減少;隨著非共軛段分子﹙PEO﹚聚合度的增加,最大發射強度處的光子能量變化不大,光激發光量子效率上升,幅射速率常數增加。
    利用偏光顯微鏡(POM)觀察DEH-PPV-b-PEO系列高分子之固態塊材於室溫下的微結構發現,隨著PEO鏈段的加入而影響了DEH-PPV的結晶區,且隨著PEO聚合度的增加,微結構尺寸變大且亂度增加,降低了自組裝微結構的有序度,此結果亦可由PEG對PEG與PLLA共聚物中硬段(PLLA)自組裝有序度的實驗結果獲得相同推論。
    當我們將光物理參數對分子鏈段聚合度的倒數作圖時,可發現在固態中斜率的絕對值將較溶液態中大,所以相較於溶液態,分子的鏈段長度在固態中對光物理性質的影響比在溶液態中顯著,而其斜率與自組裝效應有關。


    Data from UV-Vis spectroscopy, steady and time-resolved photoluminescence, in conjunction with Strickler-Berg equation were used to determine the photoluminescence efficiency of poly(2,5-di(2′-ethylhexyloxy)-1,4-phenylene vinyl-ene-b-(ethy- lene oxide)) (DEH-PPV-b-PEO) block copolymers. The relatio- nships between the photophysical properties and the degree of polymerization in two blocks were used to discuss the effects of molecular characteristics and self-assembled structures on pho- tophysical properities of DEH-PPV-b-PEO block copolymers. Moreover, polarized optical microscopy (POM) and thermodyn- amic analysis of micellization of polylactide-poly(ethylene glycol) block copolymers were used to investigate the effects of the degree of polymerization in PEG blocks on the order of self-assembled structures.
    In order to discuss the relationship between the photophysical properties and the degree of polymerization in copolymer blocks, we plot of the energy at PL emission maximum, PL quantum efficiency and radiative rate constant versus the reciprocal of the degree of polymerization in two blocks of DEH-PPV-b-PEO copolymer. As the length of the DEH-PPV increases, the energy at PL emission maximum, PL quantum efficiency and radiative rate constant all decreases. As the length of the PEO increases, the energy at PL emission maximum does not vary much, but PL quantum efficiency and radiative rate constant increases.
    Employing polarized optical microscopy to observe the microstructure of DEH-PPV-b-PEO at room temperature, we can find the effect of PEO segment reducing the structural order parameter, that is consistent with the results in PEG-PLLA copolymer systems.
    The effects of molecular chain length on photophysical prope- rties in solid-state block copolymers will be more significant than solution-state, that can be seen from plots of photophysical properities versus the reciprocal of the degree of polymerization in two blocks. Slopes in above relations relate to the self- assembled effect.

    中文摘要.....................................................................Ⅰ 英文摘要.....................................................................Ⅲ 誌謝.........................................................................Ⅴ 目錄.........................................................................Ⅵ 圖表索引.....................................................................Ⅸ ㄧ、前言......................................................................1 二、實驗方法..................................................................5 2.1 DEH-PPV-b-PEO系列團聯共聚物的合成.......................................5 2.1.1 DEH-PPV單體合成與聚合...............................................5 2.1.2 高分子尾端官能基之改質..............................................7 2.1.3 團聯共聚物之合成....................................................8 2.2 光譜分析................................................................8 2.2.1 UV-Vis吸收光譜分析..................................................8 2.2.2 光激發光光譜分析....................................................9 2.2.3 時間解析光激發光光譜分析............................................9 2.2.4 偏光顯微鏡.........................................................10 2.3 MePEG-PLLA與PLLA-PEG-PLLA團聯共聚物微胞自組裝結構有序度測定............10 2.3.1 MePEG-PLLA與PLLA-PEG-PLLA聚合反應..................................10 2.3.2 質子核磁共振光譜分析...............................................11 2.3.3 臨界微胞濃度測量...................................................11 2.3.4 團聯共聚物微胞化的熱力學分析.......................................12 三、結果與討論...............................................................16 3.1 溶液態光譜分析.........................................................16 3.1.1 UV-Vis吸收光譜分析.................................................16 3.1.2 光激發光光譜分析...................................................17 3.1.3 激子固有生命期.....................................................18 3.1.4 時間解析光激發光光譜分析...........................................20 3.1.5 光激發光量子效率...................................................22 3.2 固態光譜分析...........................................................22 3.2.1 UV-Vis吸收光譜分析.................................................22 3.2.2 光激發光光譜分析...................................................23 3.2.3時間解析光激發光光譜分析............................................24 3.3 自組裝分子的固態微結構.................................................25 3.4 高分子的光物理性質探討.................................................27 3.5 自組裝結構有序性對光性質的影響.........................................32 3.5.1 雙、三團聯共聚物之臨界微胞濃度探討.................................32 3.5.2 鏈段長度對團聯共聚物自組裝結構有序度的影響.........................33 3.5.3 鏈段長度對光物理性質的影響.........................................35 四、結論.....................................................................37 五、參考文獻.................................................................39

    1. D. D. C. Bradley, Adv. Mater. 1992, 4, 756.
    2. D. D. Gebler, Y. Z. Wang, J. W. Blatchford, S. W. Jessen, D. K. Fu, T. M.
    Swager, A. G. MacDiarmid, A. J. Epstein, Appl. Phys. Lett. 1977, 70, 1644.
    3. Y. Shi, J. Liu, Y. Yang, J. Appl. Phys. 2000, 87, 4254.
    4. U. Lemmer, D. Vacar, D. Moses, A. J. Heeger, T. Ohnishi, T. Noguchi, Appl.
    Phys. Lett. 1996, 68, 3007.
    5. H. Antoniadis, M. A. Abkowitz, J. A. Osahemi, S. A. Jenekhe, M. Stolka,
    Synth. Met. 1993, 60, 149.
    6. W. Rie, S. Karg, V. Dyakonov, M. Meier, M. Schwoere, J. Lumin. 1994, 60,
    906.
    7. N. S. Sariciftci, D. Braum, C. Zhang, V. I. Srdanov, A. J. Heeger, G.
    Stucky, F. Wudl, Appl. Phys. Lett. 1993, 62, 585.
    8. G. J. Lee, D. Kim, J. I. Lee, H. K. Shim, Y. W. Kim, J. C. Jo, Jpn. J.
    Appl. Phys. 1996, 35,114.
    9. M. R. Anderson, B. R. Mattes, H. Reiss, R. B. Kaner, Science 1991, 252,
    1412.

    10. A. Ohtani, A. M. Ezoe, T. Doi, T. Miyata, A. Miyaka, Synth. Met. 1993, 55-
    57, 3696.
    11. T. Mori, T. Watanabe, K. Minagawa, M. Tanaka, J. Polym. Sci. Part A:
    Polym. Chem. 2005, 43, 1569.
    12. J. F. Hulvat, M. Sofos, K. Tajima, S. I. Stupp, J. Am. Chem. Soc. 2005,
    127, 366.
    13. H. Wang, H. H. Wang, V. S. Urban, K. C. Littrell, P. Thiyagarajan, L.Yu,
    J. Am. Chem. Soc. 2000, 122, 6855.
    14. S. J. Strickler, R. A. Berg, J. Chem. Phys. 1962, 37, 814.
    15. I. D. Samuel, B. Crystall, G. Rumbles, P. L. Burn, A. B. Holmes, R. H.
    Friend, Synth. Met. 1993, 54, 281.
    16. K. S. Wong, D. D. C. Bradley, W. Hayes, J. F. Ryan, R. H. Friend, H.
    Lindenberger, S. Roth, J. Phys. C: Solid State Phys. 1987, 20, L187.
    17. D. Braun, E. G. J. Staring, R. C. J. E. Demandt, G. L. J. Rikken, Y. A. R.
    R. Kessener, A. H. J. Venhuizen, Synth. Met. 1994, 66, 75.
    18. C. Chi, C. Im, G. Wegner, J. Chem. Phys. 2006, 124, 024907.
    19. Z. Gao, A. Eisenberg, Macromolecules 1993, 26, 7353.
    20. M. Wilhelm, C. L. Zhao, Y. Wang, R. Xu, M. A. Winnik, J. L. Mura, G.
    Riess, M. D. Croucher, Macromolecules 1991, 24, 1033.
    21. K. Kataoka, G. S. Kwon, M. Yokoyama, T. Okano, Y. Sakurai, J. Contr. Rel.
    1993, 24, 119.
    22. A. D. Bedells, R. M. Arafeh, Z. Yang, D. Attwood, F. Heatley, J. C.
    Padget, C. Price, C. Booth, J. Chem. Soc. Faraday Trans. 1993, 89, 1235.
    23. C. Price, E. K. M. Chan, R. H. Mobbs, R. B. Stunnersfield, Eur. Polym. J.
    1985, 21, 355.
    24. C. Price, E. K. M. Chan, R. B. Stunnersfield, Eur. Polym. J. 1987, 23, 649.
    25. 簡弘達, 利用速配接合反應合成兩性之剛硬/柔軟雙嵌段式共聚物DEH-PPV-b-PEO及其
    特性研究, 台灣大學碩士論文 民國96年, pp.21~27.
    26. J. B. Cheon, Y. I. Jeong, C. S. Cho, Polymer 1999, 40, 2041.
    27. B. Chu, Z. Zhou, in Nonionic Surfactants, edited by M. J. Schick, M.
    Dekker, New York, 1967.
    28. A. Holtzer, M. F. Holtzer, J. Phys. Chem. 1974, 78, 1443.
    29. D. Attwood, A. T. Florence, Surfactant Systems: Their chemistry, Pharmacy
    and Biology, Chapman&Hall, London, 1983.
    30. C. Reichardt, Solvents and Solvent Effects in Organic Chemistry, 2nd Ed.,
    VCH Publishing, New York, 1998.
    31. R. S. Knox, Photochemistry and Photobiology 2003, 77, 492.
    32. I. D. W. Samuel, B. Crystall, G. Rumbles, P. L. Burn, A. B. Holmes, R. H.
    Friend, Chem. Phys. Lett. 1993, 213, 472.
    33. I. D. W. Samuel, G. Rumbles, C. J. Collison, Phys. Rev. B 1995, 52, 11573.
    34. I. D. W. Samuel, G. Rumbles, C. J. Collison, R. H. Friend, S. C. Moratti,
    A. B. Holmes, Synth. Met. 1997, 84, 497.
    35. N. J. Turro, Molecular Photochemistry, W. A. Benjamin, New York, 1967.
    36. M. Klessinger, J. Michl, Excited State and Photochemistry of Organic
    Molecules, VCH Publishing, New York, 1995.
    37. B. D. Olsen, S. Y. Jang, J. M. Lning, R. A. Segalman, Macromolecules
    2006, 39, 4469.
    38. M. D. Whitmore, J. Noolandi, Macromolecules 1988, 21, 1482.
    39. M. Rohlfing, M. L. Tiago, S. G. Louie, Synth. Met. 2001, 116, 101.
    40. 蔡其宏, 聚乳酸/聚乙二醇雙團聯共聚物之微胞形成及其藥物分配, 台灣科技大學碩士
    論文 民國92年, pp.6~7.
    41. D. G. Whitten, Acc. Chem. Res. 1993, 26, 502.

    QR CODE