簡易檢索 / 詳目顯示

研究生: 林奕辰
Yi-Chen Lin
論文名稱: 自組裝分子膜在銅上覆蓋率之研究
Study of Coverage of Self-Assembled Molecular Films on Copper
指導教授: 戴龑
Yian Tai
口試委員: 陶雨臺
Yu-Tai Tao
何郡軒
Jinn-Hsuan Ho
學位類別: 碩士
Master
系所名稱: 工程學院 - 化學工程系
Department of Chemical Engineering
論文出版年: 2023
畢業學年度: 111
語文別: 中文
論文頁數: 77
中文關鍵詞: 自組裝分子薄膜表面覆蓋率密度泛函理論
外文關鍵詞: Self-assembled monolayers, Surface coverage, Density Functional Theory
相關次數: 點閱:272下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究的主要目的是建立一個計算機制,用於評估自組裝分子薄膜在銅金屬基板表面的分子覆蓋率。銅作為一種具有優異導熱性和導電性的金屬,在電子產品和工程管線等眾多應用中被廣泛使用。然而,銅同時也具有高氧化性和高擴散係數的性質,這些性質在某些情況下可能對其應用造成不利影響,因此需要添加銅保護層以避免這些情況的發生。自組裝薄膜具有許多優點,包括可以精確控制其厚度達到奈米尺度,
    並且在無需外加能量的情況下自發地形成有序的分子排列。此外,可以透過設計分子結構來實現所需的功能。因此,使用自組裝薄膜作為銅保護層可以提供有效的方法來保護銅基板,我們選擇了不同的含氮分子,包括 Benzotriazole (BTZ)、1-Dodecyl-3,5-diamino-1,2,4-triazole (DDT)和 Guanosine (GNO),作為抑制劑;同時使用長碳鏈硫醇(1-Octadecanethiol, C18SH),作為標準品。這三種不同的含氮分子具有各自獨特特點,BTZ 具有環狀骨幹結構、DDT 具有鏈狀骨幹結構,而 GNO 則是含氧雜環的結構。將這些分子成長於銅基板上,並使用表面分析技術對分子在銅基板上的生長情況進行簡單確認,並進一步利用 X 光-光電子能譜儀、交流電阻抗頻譜儀以及原子力顯微鏡-穿隧電流模組等不同的儀器,測試並計算自組裝分子在銅上的覆蓋率。
    而這些不同的測試方法各有優勢,並進行了結果的比較。研究結果顯示,覆蓋率的大小趨勢為C18SH > BTZ > GNO > DDT。最後,我們還利用理論計算和模擬方法,模擬了分子在銅上的生長機制。這些計算模擬提供了分子在銅基板上活性位點和排列方式的理論解釋和預測,並計算了分子在銅上的鍵結能、HOMO、LUMO 以及能隙等性質,這些分子電子性質有助於解釋為何分子在銅上具有高覆蓋率,建立起表面覆蓋率與分子性質的關係。


    This study aims to establish a computational framework to evaluate the molecular coverage of self-assembled monolayers (SAMs) on copper substrates. Copper, renowned for its superior thermal and electrical conductivity, is widely used in electronic devices and pipelines. However, its high reactivity and diffusion coefficient may pose challenges in certain applications, necessitating the incorporation of a copper protection layer. SAMs offer numerous advantages, including precise nanoscale thickness control and spontaneous formation of ordered molecular
    arrangements without external energy. Moreover, their functionalities can be tailored by designing molecular structures.
    In this research, different nitrogen-containing molecules, namely Benzotriazole (BTZ), 1-Dodecyl-3,5-diamino-1,2,4-triazole (DDT), and Guanosine (GNO), were selected as inhibitors, with 1-Octadecanethiol (C18SH) used as a standard. Each nitrogen-containing molecule possesses distinct structural features: BTZ has a cyclic backbone, DDT has a linear backbone, and GNO contains an oxygen-containing heterocyclic structure.
    The molecules were grown on copper substrates, and surface analysis techniques confirmed their growth behavior. The molecular coverage on copper was further tested and calculated using various instruments, including X-ray Photoelectron Spectroscopy (XPS), Alternating Current Impedance Spectroscopy, and Atomic Force Microscopy (AFM) with TunnelingCurrent module. The results were compared, and the trend in molecular coverage was observed as C18SH > BTZ > GNO > DDT.
    Theoretical calculations and simulations were conducted to model the molecular growth
    mechanism on copper. These simulations provided theoretical explanations and predictions for active sites and molecular arrangements on the copper surface. Calculated electronic properties, such as bonding energy, Highest Occupied Molecular Orbital (HOMO), Lowest Unoccupied Molecular Orbital (LUMO), and band gap, contributed to understanding the high molecular coverage on copper and established the relationship between surface coverage and molecular properties.

    中文摘要 1 ABSTRACT 2 目錄 3 圖目錄 5 表目錄 7 第一章 緒論 8 1-1前言 8 1-2研究動機與目的 9 第二章 文獻回顧與相關理論 10 2-1有機薄膜( 10 2-2 X射線光電子能譜儀 15 2-3 電化學分析簡介 16 2-4原子力顯微鏡 23 2-5 計算化學方法簡介 25 第三章 實驗方法與步驟 29 3-1實驗設備 29 3-2 實驗藥品與耗材 29 3-3 實驗步驟 30 3-4 實驗分析儀器 32 3-5 理論計算模型 40 第四章 實驗結果與討論 41 4-1 自組裝薄膜分子選用 41 4-2 分子薄膜表面分析 43 4-3 XPS分析薄膜覆蓋率 50 4-4電化學分析薄膜覆蓋率 54 4-5原子力顯微鏡分析薄膜覆蓋率 58 4-6 三方法計算薄膜覆蓋率結果差異之探討 62 4-7 理論計算(Theory Calculation) 63 第五章 總結 69 5-1結論 69 5-2 未來展望 70 參考文獻 71

    [1] M. Antonijevic and M. Petrovic, "Copper corrosion inhibitors. A review," International journal of electrochemical science, vol. 3, no. 1, pp. 1-28, 2008.
    [2] M. Finšgar and I. Milošev, "Inhibition of copper corrosion by 1, 2, 3-benzotriazole: a review," Corrosion science, vol. 52, no. 9, pp. 2737-2749, 2010.
    [3] A. Ulman, An Introduction to Ultrathin Organic Films: From Langmuir--Blodgett to Self--Assembly. Academic press, 2013.
    [4] O. N. Oliveira Jr, L. Caseli, and K. Ariga, "The past and the future of Langmuir and Langmuir–Blodgett films," Chemical Reviews, vol. 122, no. 6, pp. 6459-6513, 2022.
    [5] M. Celestin, S. Krishnan, S. Bhansali, E. Stefanakos, and D. Y. Goswami, "A review of self-assembled monolayers as potential terahertz frequency tunnel diodes," Nano Research, vol. 7, pp. 589-625, 2014.
    [6] A. Ulman, "Formation and structure of self-assembled monolayers," Chemical reviews, vol. 96, no. 4, pp. 1533-1554, 1996.
    [7] B. Kushtia, "A Review on the influence of applied potential on different electrical properties of self-assembled monolayers (SAMs) of alkanethiols on gold (Au) surface," 2015.
    [8] C. D. Bain, E. B. Troughton, Y. T. Tao, J. Evall, G. M. Whitesides, and R. G. Nuzzo, "Formation of monolayer films by the spontaneous assembly of organic thiols from solution onto gold," Journal of the American Chemical Society, vol. 111, no. 1, pp. 321-335, 1989.
    [9] P. Fenter et al., "Structure of octadecyl thiol self-assembled on the silver (111) surface: an incommensurate monolayer," Langmuir, vol. 7, no. 10, pp. 2013-2016, 1991.
    [10] Y. Yamamoto, H. Nishihara, and K. Aramaki, "Self‐assembled layers of alkanethiols on copper for protection against corrosion," Journal of the Electrochemical Society, vol. 140, no. 2, p. 436, 1993.
    [11] M. a. A. Floridia Addato et al., "Alkanethiol adsorption on platinum: Chain length effects on the quality of self-assembled monolayers," The Journal of Physical Chemistry C, vol. 115, no. 36, pp. 17788-17798, 2011.
    [12] Y. H. Muhammad, S. Ahmad, M. A. Abu Bakar, A. A. Mamun, and H. P. Heim, "Mechanical properties of hybrid glass/kenaf fibre-reinforced epoxy composite with matrix modification using liquid epoxidised natural rubber," Journal of Reinforced Plastics and Composites, vol. 34, no. 11, pp. 896-906, 2015.
    [13] A. Mezy et al., "Long-chain ligand design in creating magnetic nano adsorbents for separation of REE from LTM," Separation and Purification Technology, vol. 276, p. 119340, 2021.
    [14] C. W. Meuse, "Infrared spectroscopic ellipsometry of self-assembled monolayers," Langmuir, vol. 16, no. 24, pp. 9483-9487, 2000.
    [15] P. E. Laibinis, C. D. Bain, and G. M. Whitesides, "Attenuation of photoelectrons in monolayers of n-alkanethiols adsorbed on copper, silver, and gold," The Journal of Physical Chemistry, vol. 95, no. 18, pp. 7017-7021, 1991.
    [16] B. D. Ratner and D. G. Castner, "Electron spectroscopy for chemical analysis," Surface analysis: the principal techniques, vol. 2, pp. 374-381, 2009.
    [17] 胡啟章, 電化學原理與方法. 五南圖書出版股份有限公司, 2002.
    [18] L. V. Protsailo and W. R. Fawcett, "Studies of electron transfer through self-assembled monolayers using impedance spectroscopy," Electrochimica Acta, vol. 45, no. 21, pp. 3497-3505, 2000.
    [19] W. Choi, H.-C. Shin, J. M. Kim, J.-Y. Choi, and W.-S. Yoon, "Modeling and applications of electrochemical impedance spectroscopy (EIS) for lithium-ion batteries," Journal of Electrochemical Science and Technology, vol. 11, no. 1, pp. 1-13, 2020.
    [20] A. Note, "Basics of electrochemical impedance spectroscopy," Gamry Association Inc, 2006.
    [21] N. O. Laschuk, E. B. Easton, and O. V. Zenkina, "Reducing the resistance for the use of electrochemical impedance spectroscopy analysis in materials chemistry," RSC advances, vol. 11, no. 45, pp. 27925-27936, 2021.
    [22] G. Binnig, C. F. Quate, and C. Gerber, "Atomic force microscope," Physical review letters, vol. 56, no. 9, p. 930, 1986.
    [23] R. Chintala et al., "Electrical properties of amino SAM layers studied with conductive AFM," European polymer journal, vol. 49, no. 8, pp. 1952-1956, 2013.
    [24] V. Poltev, "Molecular mechanics: principles, history, and current status," Handbook of computational chemistry, pp. 21-67, 2017.
    [25] E. Nelson, "Derivation of the Schrödinger equation from Newtonian mechanics," Physical review, vol. 150, no. 4, p. 1079, 1966.
    [26] C. A. Coulson and I. Fischer, "XXXIV. Notes on the molecular orbital treatment of the hydrogen molecule," The London, Edinburgh, and Dublin Philosophical Magazine and Journal of Science, vol. 40, no. 303, pp. 386-393, 1949.
    [27] P. Hohenberg and W. Kohn, "Inhomogeneous electron gas," Physical review, vol. 136, no. 3B, p. B864, 1964.
    [28] W. Kohn and L. J. Sham, "Self-consistent equations including exchange and correlation effects," Physical review, vol. 140, no. 4A, p. A1133, 1965.
    [29] A. Kokalj, "Molecular modeling of organic corrosion inhibitors: Calculations, pitfalls, and conceptualization of molecule–surface bonding," Corrosion Science, vol. 193, p. 109650, 2021.
    [30] D. K. Verma, Y. Dewangan, A. K. Dewangan, and A. Asatkar, "Heteroatom-based compounds as sustainable corrosion inhibitors: an overview," Journal of Bio-and Tribo-Corrosion, vol. 7, no. 1, p. 15, 2021.
    [31] S.-H. Tu, C.-C. Wu, H.-C. Wu, S.-L. Cheng, Y.-J. Sheng, and H.-K. Tsao, "Time-varying wetting behavior on copper wafer treated by wet-etching," Applied Surface Science, vol. 341, pp. 37-42, 2015.
    [32] S.-H. Tu, H.-C. Wu, C.-J. Wu, S.-L. Cheng, Y.-J. Sheng, and H.-K. Tsao, "Growing hydrophobicity on a smooth copper oxide thin film at room temperature and reversible wettability transition," Applied Surface Science, vol. 316, pp. 88-92, 2014.
    [33] Y.-J. Sheng, S. Jiang, and H.-K. Tsao, "Effects of geometrical characteristics of surface roughness on droplet wetting," The Journal of chemical physics, vol. 127, no. 23, 2007.
    [34] F. Caprioli, M. Beccari, A. Martinelli, V. Di Castro, and F. Decker, "A multi-technique approach to the analysis of SAMs of aromatic thiols on copper," Physical Chemistry Chemical Physics, vol. 11, no. 48, pp. 11624-11630, 2009.
    [35] Z. Zhang, Q. Wang, X. Wang, and L. Gao, "The influence of crystal faces on corrosion behavior of copper surface: First-principle and experiment study," Applied Surface Science, vol. 396, pp. 746-753, 2017.
    [36] R. G. Parr, L. v. Szentpály, and S. Liu, "Electrophilicity index," Journal of the American Chemical Society, vol. 121, no. 9, pp. 1922-1924, 1999.
    [37] A. Kokalj, "On the HSAB based estimate of charge transfer between adsorbates and metal surfaces," Chemical Physics, vol. 393, no. 1, pp. 1-12, 2012.

    無法下載圖示 全文公開日期 2025/08/30 (校內網路)
    全文公開日期 2025/08/30 (校外網路)
    全文公開日期 2025/08/30 (國家圖書館:臺灣博碩士論文系統)
    QR CODE