研究生: |
阮妙翠 Nguyen - Thi Dieu Thuy |
---|---|
論文名稱: |
咖啡酸、二氫咖啡酸雨二價金屬離子形成錯合物間之溶液平衡 Solution equilibria of complex formation between caffeic acid, dihydrocaffeic acid and divalent metal ions |
指導教授: |
朱義旭
Yi-Hsu Ju |
口試委員: |
王孟菊
Meng-Jiy Wang Suryadi Ismadji Suryadi Ismadji Felycia Edi Soetaredjo Felycia Edi Soetaredjo |
學位類別: |
碩士 Master |
系所名稱: |
工程學院 - 化學工程系 Department of Chemical Engineering |
論文出版年: | 2015 |
畢業學年度: | 103 |
語文別: | 英文 |
論文頁數: | 95 |
中文關鍵詞: | 咖啡酸 、二氫咖啡酸 、電位量測法 、分光光度法 |
外文關鍵詞: | caffeic acid, dihydrocaffeic acid, potentiometry, spectrophotometry |
相關次數: | 點閱:192 下載:1 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本研究探討螯合劑(咖啡酸或二氫咖啡酸)與某些二價金屬離子(Cu2+, Zn2+, Ni2+, Co2+ 及Mn2+)在二成分或三成分系統中之溶液平衡。在37oC及 0.15 mol.dm-3 NaCl離子強度下利用電位量測以求得錯合物之質子化及形成常數。錯合模式及型態圖分別利用計算程式Hyperquad2008及HySS求得。此外,利用UV – Vis分光光度法驗證質子化常數之可靠度並定性確認錯合物之形成。
在二成分及三成分系統中,金屬與螯合劑錯合物之穩定常數依下列順序遞減Cu2+ > Zn2+ > Ni2+ > Co2+ > Mn2+。金屬離子與二氫咖啡酸錯合物遠較金屬離子與咖啡酸錯合物穩定。此外,三成分系統中錯合物形成之趨勢可藉由計算相對穩定常數( )及非比例常數(log X)而得知。在生理酸鹼值下,咖啡酸及二氫咖啡酸之螯合遵循下列順序:pL0.5 (Cu2+) > pL0.5 (Zn2+) > pL0.5 (Ni2+) > pL0.5 (Co2+)> pL0.5 (Mn2+).
The solution equilibria between chelating agents (caffeic acid – CA or dihydrocaffeic acid – DCA) and several divalent metal ions (Cu2+, Zn2+, Ni2+, Co2+ and Mn2+) in binary and ternary systems were investigated in this work. The potentiometric measurement was carried out at 37oC and ionic strength 0.15 mol.dm-3 NaCl in order to determine the protonation and formation constants of complexes. The complexation model and speciation diagram were established by computer programs Hyperquad2008 and HySS, respectively. Moreover, UV – Vis spectrophotometry was performed to explore the reliable protonation constants of these ligands and qualitatively confirm the complex formation.
In both binary and ternary systems, the stability constant values of formed metal – chelator complexes decrease in the following order: Cu2+ > Zn2+ > Ni2+ > Co2+ > Mn2+. The complex formation between metal ion and DCA system is more stable than metal ion and CA system. In addition, the tendency of complex in the ternary system was revealed and evaluated by calculating the relative stability constant ( ) and the disproportionate constant (log X). Besides, at physiological pH, the sequestering ability of CA and DCA followed the order pL0.5 (Cu2+) > pL0.5 (Zn2+) > pL0.5 (Ni2+) > pL0.5 (Co2+)> pL0.5 (Mn2+).
1. Anderson, D., M.D. Waters, M.F. Wilks, and T.C. Marrs, Issues in Toxicology. The Carcinogenicity of Metals: Human Risk through Occupational and Environmental Exposure, ed. A.B.G. Lansdown. 2014: Royal Society of Chemistry.
2. Bodek, I., W.J. Lyman, W.F. Reehl, and D.H. Rosenblatt, Environmental Inorganic Chemistry. Properties, Processes, and Estimation Methods. 1988, New York: Pergamon Press.
3. Fraga, C.G., Relevance, essentiality and toxicity of trace elements in human health. Molecular Aspects of Medicine, 2005. 26: p. 235-244.
4. Flora, S.J.S., M. Mittal, and A. Mehta, Heavy metal induced oxidative stress & its possible reversal by chelation therapy. Indian J Med Res, 2008. 128: p. 501-523.
5. Leonard, S.S., G.K. Harris, and X. Shi, Metal-induced oxidative stress and signal transduction. Free Radical Biology & Medicine, 2004. 37: p. 1921-1942.
6. Flora, S.J.S. and V. Pachauri, Chelation in Metal Intoxication. International Journal of Environmental Research and Public Health, 2010. 7: p. 2745-2788.
7. Williams, D.R. and B.W. Halstead, Chelating Agents in Medicine. J. Toxicol., 1982. 19(1081-1115).
8. Andersen, O., Chemical and Biological Considerations in the Treatment of Metal Intoxications by Chelating Agents. Mini-Reviews in Medicinal Chemistry, 2004. 4: p. 11-21.
9. Boilet, L., J.P. Cornard, and C. Lapouge, Determination of the Chelating Site Preferentially Involved in the Complex of Lead(II) with Caffeic Acid: A Spectroscopic and Structural Study. J. Phys. Chem. A, 2005. 109: p. 1952-1960.
10. Taylor, D.M. and D.R. Williams, Trace element medicine and chelation therapy. 1995, The Royal Society of Chemistry.
11. Andersen, O., Principles and Recent Developments in Chelation Treatment of Metal Intoxication. Chem. Rev., 1999. 99: p. 2683−2710.
12. Dayton, M., Case for Inrtavenous EDTA Chelation Therapy. 1999, USA.
13. Smith, H.J., H. Williams-Smith, and Williams, Introduction to the Principles of Drug Design and Action. 2005: CRC Press
14. Evans, C.A.R., N.J. Miller, and G. Paganga, Antioxidant properties of phenolic compounas. Trends in Plant Science, 1997. 2: p. 152–159.
15. Kahkonen, M.P., A.I. Hopia, H.J. Vuorela, J.-P. Rauha, K. Pihlaja, T.S. Kujala, and M. Heinonen, Antioxidant Activity of Plant Extracts Containing Phenolic Compounds. J. Agric. Food Chem., 1999. 47: p. 3954–3962.
16. Velioglu, Y.S., G. Mazza, L. Gao, and B.D. Oomah, Antioxidant Activity and Total Phenolics in Selected Fruits, Vegetables, and Grain Products. J. Agric. Food Chem. , 1998. 46: p. 4113−4117.
17. Phenolic Compounds in Food and Their Effects on Health. Antioxidants and Cancer Prevention, ed. H. Mou Tuan, C.-T. Ho, and C.Y. Lee. 1992, USA.
18. Borges, F., J.L.F.C. Lima, I. Pinto, S. Reis, and C. Siquetb, Application of a Potentiometric System with Data-Analysis Computer Programs to the Quantification of Metal-Chelating Activity of Two Natural Antioxidants:Caffeic Acid and Ferulic Acid. Helvetica Chimica Acta, 2003. 86: p. 3081-3087.
19. Chandra, I.K., A.E. Angkawijaya, S.P. Santoso, S. Ismadji, F.E. Soetaredjo, and Y.-H. Ju, Solution equilibria studies of complexes of divalent metal ions with 2-aminophenol and 3,4-dihydroxybenzoic acid. Polyhedron, 2015. 88: p. 29-39.
20. Borgesa, F., C. Guimaraesb, J.L.F.C. Limac, I. Pintoc, and S. Reis, Potentiometric studies on the complexation of copper(II) by phenolic acids as discrete ligand models of humic substances. Talanta 2005. 66: p. 670–673.
21. Angkawijaya, A.E., A.E. Fazary, E. Hernowo, M. Taha, and Y.-H. Ju, Iron(III), Chromium(III), and Copper(II) Complexes of L-Norvaline and Ferulic Acid. J. Chem. Eng. Data, 2011. 56: p. 532–540.
22. Moon, J.-H. and J. Terao, Antioxidant Activity of Caffeic Acid and Dihydrocaffeic Acid in Lard and Human Low-Density Lipoprotein. J. Agric. Food Chem, 1998. 46: p. 5062-5065.
23. Peppercorn, M.A. and P. Goldman, Caffeic Acid Metabolism by Bacteria of the Human Gastrointestinal Tract. J. Bacteriol. , 1971. 108: p. 996-1000
24. Sigel, A. and H. Sigel, Metal ions in biological systems. Metal Ions and Their Complexes in Medication, ed. A. Sigel and H. Sigel. Vol. 41. 2004, Switzerland. 530.
25. Sigel, A., H. Sigel, and R.K.O. Sigel, Metal Ions in Life Sciences. Interrelations between Essential Metal Ions and Human Diseases. Vol. 13. 2013.
26. Glusker, J.P., A.K. Katz, and C.W. Bock, Metal ions in biological systems. The Rigaku Journal, 1999. 16: p. 8-16.
27. Williams, D.R., Metals, Ligands, and Cancer. Chemical Reviews, 1972. 72: p. 203-213.
28. Cui, Y., Y.-G. Zhu, R. Zhai, Y. Huang, Y. Qiu, and J. Liang, Exposure to metal mixtures and human health impacts in a contaminated area in Nanning, China. Environment International 2005. 31: p. 784 – 790.
29. Jomova, K. and M. Valko, Advances in metal-induced oxidative stress and human disease, in Toxicology. 2011. p. 65-87.
30. Sherameti, I. and A. Varma, Soil Biology. Detoxification of Heavy Metals. Vol. 30. 2011. 477.
31. Sherameti, I. and A. Varma, Soil Biology. Soil Heavy Metals. Vol. 19. 2010.
32. Vallee, B.L. and D.S. Auld, Zinc Coordination, Function, and Structure of Zinc Enzymes and Other Proteins. Biochemistry, 1990. 29: p. 5647-5659.
33. Biomedical and Health Research. Zinc in human health, ed. L. Rink. Vol. 76. 2011.
34. Handbook on the Toxicology of Metals. General Considerations, ed. G.F. Nordberg, B.A. Fowler, and M. Nordberg. Vol. 1. 2015.
35. Anderson, D., M. Waters, and T.C. Marrs, Issues in Toxicology. Manganese in Health and Disease, ed. L.G. Costa and M. Aschner. 2013.
36. Goldfrank, L.R., N.E. Flomenbaum, N.A. Lewin, M.A. Howland, R.S. Hoffman, and L.S. Nelson, Goldfrank’s toxicologic emergencies. 2002.
37. Jahnert, T., M.D. Hagerab, and U.S. Schubert, Application of phenolic radicals for antioxidants, as active materials in batteries, magnetic materials and ligands for metal-complexes. Journal of Materials Chemistry A, 2014. 2: p. 15234–15251.
38. Mota, F.L., A.J. Queimada, S.P. Pinho, and E.A. Macedo, Aqueous Solubility of Some Natural Phenolic Compounds. Ind. Eng. Chem. Res. , 2008. 47: p. 5182-5189.
39. Stefano, C.D., C. Foti, O. Giuffrè, and S. Sammartano, Acid–base and UV behavior of 3-(3,4-dihydroxyphenyl)-propenoic acid (caffeic acid) and complexing ability towards different divalent metal cations in aqueous solution. Journal of Molecular Liquids, 2014. 195: p. 9-16.
40. Türkel, N., M. Berker, and U. Özer, Potentiometric and Spectroscopic Studies on Aluminium(III) Complexes of Some Catechol Derivatives. Chem. Pharm. Bull. , 2004. 52: p. 929-934.
41. Santos, S.A.O., C.S.R. Freire, M.R.M. Domingues, A.J.D. Sylvestre, and C.P. Neto, Characterization of Phenolic Components in Polar Extracts of Eucalyptus globulus Labill. Bark by High-Performance Liquid Chromatography Mass Spectrometry. J. Agric. Food Chem., 2011. 59: p. 9386–9393.
42. Choudhary, M.I., N. Naheed, A. Abbaskhan, S.G. Musharraf, H. Siddiqui, and Atta-ur-Rahman, Phenolic and other constituents of fresh water fern Salvinia molesta. Phytochemistry, 2008. 69: p. 1018–1023.
43. Lee YS, Kang YH, Jung JY, Lee S, Ohuchi K, Shin KH, Kang IJ, Park JH, Shin HK, and Lim SS, Protein glycation inhibitors from the fruiting body of Phellinus linteus. . Biological & Pharmaceutical Bulletin, 2008. 31: p. 1968-1972.
44. Prasad, N.R., S. Karthikeyan, A. Karthikeyan, and B.V. Reddy, Inhibitory effect of caffeic acid on cancer cell proliferation by oxidative mechanism in human HT-1080 fibrosarcoma cell line. Mol Cell Biochem, 2011. 349: p. 11-19.
45. Olthof, M.R., P.C.H. Hollman, and M.B. Katan, Chlorogenic Acid and Caffeic Acid Are Absorbed in Humans. The Journal of Nutrition, 2001. 131: p. 66-71.
46. Cocks, S., P.W. Under, and A. Voyé, Potentiometric Investigations of Equilibria Between Caffeic Acid and Manganese(II), Cobalt(II), Nickel(II) and Cadmium(II) Ions in Aqueous Solution. Journal of Coordination Chemistry, 1992. 25: p. 211-220.
47. Owen RW, Haubner R, Mier W, Giacosa A, Hull WE, Spiegelhalder B, and Bartsch H, Isolation, structure elucidation and antioxidant potential of the major phenolic and flavonoid compounds in brined olive drupes. Food and Chemical Toxicology, 2003. 41: p. 703-717.
48. Goldstein, D.S., R. Stul, S.P. Markey, and E.S. Marks, Dihydrocaffeic acid: a common contaminant in the liquid chromatographic-electrochemical measurement of plasma catecholamines in man Journal of Chromatography, 1984. 311: p. 148-153.
49. Poquet, L., M.N. Clifford, and G. Williamson, Investigation of the metabolic fate of dihydrocaffeic acid. Bio chemical pharmacology 2008. 7: p. 1218–1229.
50. Andjelkovic, M., J.V. Camp, B.D. Meulenaer, G. Depaemelaere, C. Socaciu, M. Verloo, and R. Verhe, Iron-chelation properties of phenolic acids bearing catechol and galloyl groups. Food Chemistry 2006. 98: p. 23-31.
51. Chimi, H., J. Cillard, P. Cillard, and M. Rahmani, Peroxyl and hydroxyl radical scavenging activity of some natural phenolic antioxidants. Journal of the American Oil Chemists Society, 1991. 68: p. 307-312.
52. Marcus, Y. and I. Eliezer, The stability of mixed complexes in solution. Coordination Chemistry Reviews, 1969. 4: p. 273-322.
53. Ahrland, S., J. Chatt, and N.R. Davies, The relative affinities of ligand atoms for acceptor molecules and ions. Quarterly Reviews Chemical Society, 1958. 12: p. 265-276.
54. Pearson, R.G., Hard and Soft Acids and Bases. Journal of the American Chemical Society, 1963. 85: p. 3533-3539.
55. Kawaguchi, S., Inorganic Chemistry Concepts. Variety in Coordination Modes of Ligands in Metal Complexes. Vol. 11. 1988.
56. Nieboer, E. and D.H.S. Richardson, The replacement of the nondescript term 'heavy metals' by a biologically and chemically significant classification of metal ions. Environmental Pollution 1980. 1: p. 3-26.
57. Pearson, R.G., Hard and Soft Acids and Bases, HSAB, Part I: Fundamental principles. Journol of Chemical Education, 1968. 45: p. 581-587.
58. Irving, H. and R.J.P. Williams, The Stability of Transition-metal Complexes. Journal of Chemical Society 1953. 637: p. 3192-3210.
59. Janes, R. and E. Moore, Metal-Ligand Bonding. 2004, Royal society of chemistry.
60. Falcone, G., O. Giuffrè, and S. Sammartano, Acid–base and UV properties of some aminophenol ligands and their complexing ability towards Zn2+ in aqueous solution. Journal of Molecular Liquids, 2011. 159: p. 146–151.
61. Linder, P.W. and A. Voye, Potentiometric investigations of the equilibria between caffeic acid and copper(ii), zinc(ii), iron and hydrogen ions in aqueous solution. Polyhedron, 1987. 6: p. 53-60.
62. Cornard, J.-P., A. Caudron, and J.-C. Merlin, UV–visible and synchronous fluorescence spectroscopic investigations of the complexation of Al(III) with caffeic acid, in aqueous low acidic medium. Polyhedron 2006. 25: p. 2215–2222.
63. Adams, M.L., B. O’Sullivan, A.J. Downard, and K.J. Powell, Stability Constants for Aluminum(III) Complexes with the 1,2-Dihydroxyaryl Ligands Caffeic Acid, Chlorogenic Acid, DHB, and DASA in Aqueous Solution. J. Chem. Eng. Data, 2002. 47: p. 289-296.
64. Williams, P.A.M., A.C.G.l. Baro, and E.G. Ferrer, Study of the interaction of oxovanadium(IV) with a plant component (caffeic acid). Synthesis and characterization of a solid compound. Polyhedron 2002. 21: p. 1979-1984.
65. Lamy, I., M. Seywbrt, M. Cromer, and J.-P. Scharff, Simple and mixed ligand complexes of copper (II) with polyfunctignal phenolic compounds as models of natural substances. Analytica Chimica Acta, 1986. 176: p. 201-212.
66. Türkel, N. and U. Özer, Potentiometric Investigations of Some Catechol Derivatives of Scandium. Russian Journal of Coordination Chemistry, 2005. 31: p. 213-217.
67. Ishimitsu, T., S. Hirose, and H. Sakurai, Microscopic acid dissociation constants of 3,4_dihydroxyphenylpropionic acid and related compounds, and 3,4_dihydroxyphenylalanine (DOPA). Talanta, 1977. 24: p. 555-560.
68. Fazary, A.E. and A.M. Ramadan, Stability constants and complex formation equilibria between iron, calcium, and zinc metal ions with vitamin B9 and glycine. An Open Access Journal 2014. 1: p. 139-148.
69. Beltrán, J.L., N. Sanli, G. Fonrodona, D. Barrón, G. Özkanb, and J. Barbosa, Spectrophotometric, potentiometric and chromatographic pKa values of polyphenolic acids in water and acetonitrile–water media. Analytica Chimica Acta 2003. 484: p. 253–264.
70. Gans, P., A. Sabatinib, and A. Vacca, Investigation of equilibria in solution. Determination of equilibrium constants with the HYPERQUAD suite of programs. Talanta, 1996. 43: p. 1739-1753.
71. Alderighi, L., P. Gans, A. Ienco, D. Peters, A. Sabatini, and A. Vacca, Hyperquad simulation and speciation (HySS): a utility program for the investigation of equilibria involving soluble and partially soluble species. Coordination Chemistry Reviews, 1999. 184: p. 311–318.
72. Gans, P., A. Sabatini, and A. Vacca, Determination of equilibrium constants from Spectrophotometric data obtanied from solution of known pH: the program pHab. Annali di Chimica, 1999. 89: p. 45-49.
73. Takeda, H., M. Tsuji, M. Inazu, T. Egashira, and T. Matsumiya, Rosmarinic acid and caffeic acid produce antidepressive-like effect in the forced swimming test in mice. European Journal of Pharmacology 2002. 449: p. 261–267.
74. Reijenga, J., A.v. Hoof, A.v. Loon, and B. Teunissen, Development of Methods for the Determination of pKa Values. Analytical Chemistry Insights 2013. 8: p. 53-71.
75. Andrasi, M., P. Buglyo, L. Zekany, and A. Gaspar, A comparative study of capillary zone electrophoresis and pH-potentiometry for determination of dissociation constants. Journal of Pharmaceutical and Biomedical Analysis, 2007. 44: p. 1040–1047.
76. Babic, S., A.J.M. Horvat, D.M. Pavlovic, and M. Kastelan-Macan, Determination of pKa values of active pharmaceutical ingredients. Trends in Analytical Chemistry, 2007. 26: p. 1043-1061.
77. Ertokus, G.P. and A.H. Aktas, Determination of the Dissociation Constant of Some Substituted Phenols by Potentiometric Method in Acetonitrile-Water Mixtures. SDU Journal of Science, 2010. 5: p. 60-66.
78. Silva, F.A.M., F. Borges, C. Guimaraes, J.L.F.C. Lima, C. Matos, and S. Reis, Phenolic Acids and Derivatives: Studies on the Relationship among Structure, Radical Scavenging Activity, and Physicochemical Parameters. J. Agric. Food Chem. 2000, 48, 2122−2126, 2000. 48: p. 2122-2126.
79. Abichndani, C.T. and S.K.K. Jatkar., Dissociation constants of ortho-, meta- and para- hy droxy benzoic acids, gallic acid, catechol, resorcinbl, hydroquinone, pyrogallol and phlorbglucinol. J. Indian Inst. Sci., 1938. 21A: p. 417-441.
80. Thomas, O. and C. Burgess, Uv-visible spectrophotometry of water and wastewater. Techniques and instrumentation in analytical chemistry, ed. 01. Vol. 27. 2007. 373.
81. Bjerrum, J., Metal Ammine Formation in Aqueous Solution: Theory of the Reversible Step Reactions. 1941, Denmark: P. Haase and Son.
82. Chelating Agents and Metal Chelates, ed. F.P. Dwyer and D.P. Mellor. 1964, USA: Academic Press.
83. Santoso, S.P., I.K. Chandra, F.E. Soetaredjo, A.E. Angkawijaya, and Y.-H. Ju, Equilibrium Studies of Complexes between N-Acetylcysteine and Divalent Metal Ions in Aqueous Solutions. Journal of Chemical & Engineering Data, 2014. 59: p. 1661-1666.
84. Athavale, V.T., L.H. Prabhu, and D.G. Vartak, Solution stability constants of some metal complexes of derivatives of catechol. Journal of Inorganic and Nuclear Chemistry, 1966. 28: p. 1237-1249.
85. Lambert, J.H. and R.R. Clikemank, Steric Interactions of Double Bonds. Acc. Chem. Res. , 1987. 20: p. 454-458.
86. Martin, R.B. and R. Prados, Some factors influencing mixed complex formation. J. inorg. nucl. Chem., 1974, Vol. 36, pp. , 1974. 36: p. 1665-1670.
87. Crea, F., G. Falcone, C. Foti, O. Giuffre, and S. Materazzib, Thermodynamic data for Pb2+ and Zn2+ sequestration by biologically important S-donor ligands, at different temperatures and ionic strengths. New J. Chem., 2014. 38: p. 3973--3983.
88. Stefano, C.D., G. Lando, A. Pettignano, and S. Sammartano, Sequestering Ability of Aminopolycarboxylic (APCs) and Aminopolyphosphonic (APPs) Ligands Toward Palladium(II) in Aqueous Solution. J. Chem. Eng. Data, 2014. 59: p. 1970−1983.
89. Berto, S., F. Crea, P.G. Daniele, C.D. Stefano, E. Prenesti, and S. Sammartano, Sequestering Ability of Dicarboxylic Ligands Towards Dioxouranium(VI) in NaCl and KNO3 Aqueous Solutions at T =298.15 K. J Solution Chem 2009. 38: p. 1343–1356.
90. Bretti, C., R.M. Cigala, G. Lando, D. Milea, and S. Sammartano, Sequestering Ability of Phytate toward Biologically and Environmentally Relevant Trivalent Metal Cations. J. Agric. Food Chem., 2012. 60: p. 8075−8082.
91. Crea, F., C.D. Stefano, N. Porcino, and S. Sammartano, Sequestering ability of phytate towards protonated BPEI and other polyam-monium cations in aqueous solution. Biophysical Chemistry, 2008. 136: p. 108–114.
92. Stefano, C.D., A. Gianguzza, D. Milea, A. Pettignano, and S. Sammartano, Sequestering ability of polyaminopolycarboxylic ligands towards dioxouranium(VI) cation. Journal of Alloys and Compounds 2006. 424: p. 93–104.
93. Crea, F., C. Foti, and S. Sammartano, Sequestering ability of polycarboxylic ligands towards dioxouranium(VI). Journal of Alloys and Compounds, 2006. 424: p. 93–104.
94. Casale, A., C.D. Stefano, GiuseppeManfredi, DemetrioMilea, and S. Sammartano, Sequestration of Alkyltin(IV) Compounds in Aqueous Solution: Formation, Stability, and Empirical Relationships for the Binding of Dimethyltin(IV) Cation byN- and O-Donor Ligands. Bioinorganic Chemistry and Applications, 2009. 2009.
95. Stefano, C.D., A. Gianguzza, D. Piazzese, N. Porcino, and S. Sammartano, Sequestration of biogenic amines by alginic and fulvic acids. Biophysical Chemistry 2006. 122: p. 221–231.
96. Crea, F., C.D. Stefano, D. Milea, and S. Sammartano, Speciation of Phytate Ion in Aqueous Solution. Thermodynamic Parameters for Zinc(II) Sequestration at Different Ionic Strengths and Temperatures. J Solution Chem 2009. 38: p. 115-134.
97. Applied Mathematical Sciences. The Boltzmann Equation and Its Applications, ed. F. John, J.E. Marsden, and L. Sirovich. 1988, Italy.