簡易檢索 / 詳目顯示

研究生: 陳詩佳
Shih-Chia Chen
論文名稱: 蛋白質溶液聚集行為與形態學之研究
A Study of aggregation behavior and morphology of protein in solution
指導教授: 洪伯達
Po-Da Hong
口試委員: 王英靖
none
陳志堅
Jyh-Chien Chen
陳建光
Jem-Kun Chen
學位類別: 碩士
Master
系所名稱: 工程學院 - 材料科學與工程系
Department of Materials Science and Engineering
論文出版年: 2009
畢業學年度: 97
語文別: 中文
論文頁數: 49
中文關鍵詞: 蛋白質聚集行為形態溶菌酶
外文關鍵詞: protein, aggregation, morphology, lyszoyme
相關次數: 點閱:211下載:12
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本文將建立在過飽和狀態下以短程作用力為主的蛋白質系統相圖,並瞭解在接近亞穩態(metastable) 液-液共存曲線附近聚集行為。針對雞蛋白溶菌酶(lysozyme)溶液,在固定pH=4.5、鹽類濃度(3wt% NaCl)和緩衝液濃度(0.1M NaAc)下研究不同溫度聚集形態的差異和其聚集過程。利用曇點測量儀、偏光顯微鏡、掃描式電子顯微鏡、落球法和小角光散射來串連不同溫度下聚集行為與形態之發展過程。首先,由曇點實驗和理論架構出基本相圖,蛋白質溶液的聚集行為可由溫度與濃度條件差異依形態特徵差異區分出四個區域,並且針對由曇點測量時穿透光呈現兩段式轉折出發,深入瞭解在亞穩態裡液-液共存曲線鄰近範圍內的現象。察覺到蛋白質系統,不同於一般高分子系統結晶化過程和凝膠化過程的兩大差異處。
    蛋白質溶液濃度固定情況下,液-固共存區內接近液-液共存曲線處(10℃),由於巨大的濃度漲落,導致晶核成核將分為兩個階段形成。低於液-液共存曲線溫度(6.5℃),系統產生相分離伴隨形成類固體的非平衡態結構。對於上敘兩種獨特的情況,透過小角光散射隨時間紀錄Imax和qmax的關係,並嘗試用經典的相分離理論、膠體聚集行為來描述其變化。在Dense liquid drops to crystals 或 Jamming轉變過程中,DLCA 模型都可以階段性的符合,但偏離經典的相分離機制的敘述。我們推測蛋白質系統形成的最終形態可能由分子到最後聚集體應是經過多階層的聚集步驟而產生。


    In this work, we are interested in the aggregation phenomenon of supersaturated lysozyme solution near the metastable liquid-liquid (L-L) coexistence curve. Solution properties are fixed by addition of salt and buffer, and its pH value is adjusted to 4.5. We probe the aggregation of lysozyme solution at different temperatures by measurements of cloud point, polarized optical microscopy (POM), scanning electron microscopy (SEM), falling-sphere method, and small angle light scattering (SALS). From our composition-temperature phase diagram, the aggregation of lysozyme solution can be divided into four regions. In addition, these results of cloud-point measurement show interesting two-step decay in transmit light intensity within a small temperature range. This evidence suggests the aggregation of supersaturated lysozyme solution is different from the crystallization/gelation in common polymer systems. Moreover, when the temperature of lysozyme solution ( ) is slightly higher than the L-L coexistence curve, pictures of POM show the time evolution of crystallization in solution. This special structure formation is so called dense-drop to crystal transition. Nucleation process is two-step mechanism due to critical fluctuation. As the solution temperature decrease below the L-L coexistence curve ( ), by contrast, the structure of lysozyme solution seems like as a transient gel or jamming solid. Through the analysis of SALS data, we find that the structural evolution of lysozyme solution near its L-L coexistent cure are partially in agreement with model predictions of diffusion limited cluster aggregation (DLCA). This implies the final structure of lysozyme in solution is the outcome of hierarchical aggregation.

    論文提要內容 I Abstract II 誌 謝 III 目 錄 IV 圖 表 目 錄 VI 論 文 符 號 表 IX 第一章 前 言 1 1.1 蛋白質結構 1 1.2 膠體系統 3 1.2.1膠體聚集行為 4 1.2.2 Depletion interaction 5 1.2.3膠體系統相圖 6 1.3 蛋白質的聚集行為 8 1.4 平衡與非平衡的凝膠化行為 8 1.5 遠離平衡態下軟物質結構 11 1.6 小角光散射在聚集結構的解析 13 1.7 研究目的 14 第二章 實驗方法 15 2.1 材料與蛋白質溶液的製備 15 2.2 蛋白質濃度標定 16 2.3 實驗方式 17 2.3.1 光學顯微鏡( POM ) 17 2.3.2 掃描式電子顯微鏡 ( SEM ) 18 2.3.3 曇點測量儀 ( Cloud point ) 18 2.3.4 .Jammed state to solution 轉移溫度曲線測定 18 2.3.5 小角光散射 19 第三章 結果與討論 20 3.1 蛋白質溶液相圖 20 3.2 蛋白質聚集形態(Morphology) 26 3.3 蛋白質溶液的散射分析 32 3.3.1 Dense liquid drops to crystal 34 3.3.2 Jamming transformation 37 第四章 結 論 45 參考文獻 47

    1. Branden, C.; Tooze, J. “Introduction to protein structure”, 2nd , Garland Publishing, New York. 1998 ; Phillips, D. C., Proc. Nat. Acad. Sci. 57, 484, 1967.
    2. Lubert S. “Biochemisty”, New York , 1988.
    3. Yan, H.; Saiani, A.; Miller, A. F., Macromol. Symp. 251, 112, 2007.
    4. Salvett, G.; Tombari, E.; Mikheeva, L.; Johari, G. P., J. Phys. Chem. B 106, 6081, 2002.
    5. Yan, H.; Frielinghaus, H.; Nykanen, A.; Ruokolainen, J.; Saiani, A.; Miller, A. F., Soft Matter, 4, 1313, 2008.
    6. Fleming, A., Proc. Roy. Soc. Lond. B93, 306, 1922.
    7. Rosenber, F.; Howard, S. B.; Sowers, J. W.; Nyce, T. A., J. Crystal Growth 129, 1, 1993.
    8. Tardieu, A.; Le Verge, A.; Malfois, M.; Bonntet, F.; Finet, S.; Belloni, L., J. Crystal Growth 196, 193, 1999.
    9. Tanaka, S.; Egelhaaf, S. U.; Poon, W. C. K., Phys. Rev. Lett. 92, 128102-1, 2004.
    10. Pusey, L. M., J. Crystal Growth 88, 419, 1988; Rosenberger, F., J. Crystal Growth 90, 74, 1988; Howard, B. J. Crystal Growth 90, 94, 1988.
    11. Peter J. Lu; Jacinta C. C.; Hans M. W.; Andrew B. S.; Weitz D. A., Phys. Rev. Lett. 96, 028306, 2006.
    12. Segrè, P. N.; Prasad, V.; Schofield, A. B.; Weitz, D. A., Phys. Rev. Lett. 86, 6042, 2001.
    13. Pusey, P. N.; Megen, W., Nature 320, 340, 1986.
    14. Ilett, S. M.; Orrock, A.; Poon, W. C. K.; Pusey, P. N., Phys. Rev. E 51, 1344, 1995.
    15. Mouschol, M.; Rosenberger, F. J. Chem. Phys. 107, 1953, 1997.
    16. Berland, C. R.; Thurston, G. M.; Kondo, M.; Broide, M. L.; Pande, J.; Ogun, O.; Benedek, G. B. Proc. Natl. Acad. Sci. U.S.A. 89, 1214, 1992; Asherie, N.; Lomakin, A.; Benedek, G. B., Phys. Rev. Lett. 77, 4832, 1996.
    17. Anderson, V. J.; Lekkerkerker, H. N. W., Nature 416, 811, 2002.
    18. Taratuat, V. G.; Holschbach, A.; Thurston, G. M.; Blankschtein, D.; Benedek, G. B., J. Phys. Chem. 94, 2140, 1990.
    19. Elizabeth, C.; Marc, L. P., J. Crystal Growth 114, 286, 1991.
    20. Filobelo, L. F.; Galkin, O.; Vekilov P. G., J. Chem. Phys. 123, 014904, 2005.
    21. Sedgwick, H.; Kroy, K.; Salonen, A.; Robertson, M. B.; Egelhaaf, S. U.; Poon, W. C. K., Eur. Phys. J. E 16, 77, 2005.
    22. Tanaka, H.; Nishikawa, Y., Phys. Rev. Lett. 95, 078103, 2005.
    23. Velev, O. D.; Pan, Y. H.; Kaler, E. W.; Lenhoff, A.M., Cryst. Growth Des. 5, 351, 2005.
    24. Nicolai, T.; Durand, D., Curr. Opin. Colloid Interface Sci. 12, 23, 2007.
    25. Umbach, P.; Georgails, Y.; Saenger, W., J. Am. Chem. Soc 120, 2382, 1998.
    26. Stradner, A.; Sedgwick, H.; Cardinaux, F.; Poon, W. C. K.; Egelhaaf, S. U.; Schurtenberger, P., Nature 432, 492, 2004.
    27. Poon, W. C. K., Phys. Rev. E 55, 3762, 1997.
    28. Asherie, N.; Lomakin, A.; Benedek, G. B., Phys. Rev. Lett. 77, 4831, 1996.
    29. Pellicane, G.; Costa, D.; Caccamo, C., J. Phys.: Condens. Matter 15, 375, 2003.
    30. Hong, P. D.; Chen, J. H., Polymer 40, 4077, 1999 ;Hong, P. D.; Chou, C. M.; Chen, J. H., Polymer 41, 5847, 2000.
    31. Hong, P. D.; Chen, J. H.; Huang, H. T., J. Polym. Res. 5, 15, 1998; Hong, P. D.; Chen, J. H.; Wu, H. L., J. Appl. Polym. Sci. 69, 2477, 1998.
    32. De Gennes, P. G., “Scaling Concepts in Polymer Physics”, Cornell University Press: Ithaca, 1985.
    33. Stauffer, D.; Coniglio, A.; Adan, M., Adv. Polym. Sci. 44, 105, 1982.
    34. Haasen, P., Material Science and Technology, Vol.5 “Phase Transformation in Materials”, Weinheim, New York, 1991 ; Hermansson, A. M.; Nicolai, T.; Durand, D.; Benyahia, L., Macro- molecules 37, 5596, 2004 ; Hong, P. D.; Chen, J. H., Macromolecules 33, 9673, 2000.
    35. Hong, P. D.; Chen, J. H., Macromolecules 37, 5596, 2004.
    36. Cates, M. E.; Wittmer, J. P.; Bouchaud, J. P.; Laudin, P., Physic. Rev. Lett. 81, 1841, 1998.
    37. Lui, A.; Nagel, S. R., Nature 396, 21, 1998.
    38. Trappe, V.; Prasad, V.; Cipelletti, L.; Segre, P. N.; Wetiz, D. A., Nature 411, 772, 2001.
    39. Hong, P. D. Lab, Structural formation far from equilibrium and time-dependent dynamic in jammed soft matters, 2006.
    40. Witten, T. A.; Sander, L. M., Phys. Rev. Lett. 47, 1400, 1981.
    41. Zaccarelli, E., J. Phys. Condens. Matter 19, 323101, 2007.
    42. Poon, W. C. K.; Haw, M. D., Adv. Colloid Interface Sci. 73, 71, 1997.
    43. Lu, P. J.; Zaccrelli, E.; Cilla, F.; Schofield, A. B.; Sciortino, F.; Weitz, D. A., Nature 453, 499, 2008.
    44. Berne, B. J.; Pecora, R., ”Dynamic Light Scattering”, Wiley: New York, 1976.
    45. Forsythe, E.L.; Snell, E. H.; Malone,C. C.; Pusey, M. L., J. Crystal Growth 196, 332, 1999; Petrova, E.; Dold, P.; Tsukamoto, K., J. Crystal Growth 304, 141, 2007.
    46. Ten Wolde, P. R.; Frenkel, D., Science 277, 1975, 1997.
    47. 王昱凱,碩士論文“蛋白質溶液聚集行為之研究”,台灣科技大學高分子工程研究所,2007.
    48. Sanchez, C.; Mekhoulfi, G.; Schmitt, C.; Renard, D.; Robert, P.; Lehr, C.-M.; Lamprecht, A.; Hardy, J., Langmuir 18, 10323, 2002.
    49. Tanana, S.; Ito, K.; Hayakawa, R.; Atata, M., J. Chem. Phys. 111, 10330, 1999.
    50. Elicabe, G. E.; Larrondo, H. A.; Williams, R. J. J, Macromolecules 30, 6550, 1997; 31, 8173, 1998.
    51. Svhwarz, F. P., Thermochim. Acta. 147, 71, 1989.
    52. Soumpasis, D. M.; Georgalis, Y., Biophys. J. 27, 2770, 1997.
    53. Lu, J; Keith C., Prog. Cryst. Growth Charact. Mater. 46,105, 2003.
    54. Tanka, S.; Yamamoto, M.; Ito, K.; Hayakawa, R.; Ataka, M., Phys. Rev. E 56, R67, 1997.
    55. Tanka, S.; Yamamoto, M.; Kawashima, K.; Ito, K.; Hayakawa, R.; Ataka, M., J. Crystal Growth 168, 44, 1996.
    56. Gerogalis, Y.; Umbach, P.; Mario, D. M.; Saenger, W., J. Am. Chem. Soc. 120, 5539, 1998.
    57. Gerogalis, Y.; Umbach, P.; Raptis, J.; Saenger, W., Acta Crystallogr. Sect. D-Biol. Crystallogr. D53, 691, 1997.
    58. Tanaka, H., J. Phys.: Condens. Matter 12, R207, 2000.
    59. Poulin, P.; Bibettel, J.; Weitz, D. A., Eur. Phys. J. B 7, 277, 1999
    60. Furukawa, H., Phys. Rev. Lett., 43, 136, 1979.
    61. 楊展如,“分形物理學”,上海科技教育出版社,1996.

    QR CODE