簡易檢索 / 詳目顯示

研究生: 鄭丞勛
Chen-Hsun Cheng
論文名稱: 蛋白質溶液在黏彈性特徵與動態侷限下之液-液相分離行為研究
A Study on Liquid-liquid Phase Separation Behavior of Protein Solutions with Viscoelastic Characteristics and Dynamical Arrest
指導教授: 洪伯達
Po-Da Hong
口試委員: 洪伯達
Po-Da Hong
白孟宜
Meng-Yi Bai
江少華
Adhimoorthy Prasannan
學位類別: 碩士
Master
系所名稱: 工程學院 - 材料科學與工程系
Department of Materials Science and Engineering
論文出版年: 2023
畢業學年度: 112
語文別: 英文
論文頁數: 74
中文關鍵詞: 溶菌酶雞蛋白液-液相分離動態侷限分形維度小角度光散射
外文關鍵詞: lysozyme, liquid-liquid phase separation, dynamical arrest, fractal dimension, small-angle light scattering
相關次數: 點閱:69下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 在以短程作用力主導的蛋白質溶液相分離行為中,蛋白質稠密相(protein-rich phase)的液態-固態轉變會導致相分離動力學發生動態侷限(dynamical arrest)的現象。本研究利用小角光散射儀、雷射掃描共軛焦顯微鏡,以及相差顯微鏡,追蹤溶菌酶球蛋白溶液相分離的動力學過程以及形態學變化。
    透過在不同的熱力學條件下觀察相分離過程,我們發現蛋白質稠密相的黏彈性特徵,顯示蛋白質稠密相從液態到固態的轉變之間存在平滑的過渡區間。除此之外,在非臨界淬火的顯微影像中,我們觀察到稠密相液滴形成類似於膠體凝膠的結構,並在液滴內發現球蛋白的分形聚集現象。綜合以上結果,我們推測溶菌酶球蛋白由微觀到介觀的跨尺度凝膠化現象,將賦予蛋白質稠密相黏彈性特徵,從而影響蛋白質溶液相分離的動力學機制。


    In protein solutions where short-range forces dominate the phase separation behavior, the transition from liquid to solid of the protein-rich phase leads to dynamical arrest in the phase separation kinetics. We employed apparatus of small-angle light scattering, laser scanning confocal microscope, and phase contrast microscope to investigate the kinetic process and morphology changes of phase separation in lysozyme solution.
    We found the viscoelastic characteristics of the protein-rich phase by observing the phase separation process under different conditions. We noted a smooth transition between the liquid and solid phases of the protein-rich phase. In addition, in microscopy images of off-critical quench, we observed that protein-rich droplets formed structures similar to those in colloidal gels. We also found fractal aggregation of globulin within the droplets. Based on our results, we suggested that the gelation phenomenon of lysozyme globulin gives viscoelastic characteristics to the protein-rich phase, thereby influencing the kinetic mechanism of protein solution phase separation.

    Abstract IV Contents V Chart Catalogues VII Chapter 1. Introduction 11 1.1. Application of Protein Aggregation 11 1.1.1. Fluorescence modification by Eosin Y 13 1.2. Protein Structure and Colloidal System 14 1.2.1. Amino Acids and Primary Structure 14 1.2.2. Secondary Structure 15 1.2.3. Tertiary Structure 15 1.2.4. Quaternary Structure 16 1.2.5. Colloidal System 16 1.2.6. Van der Waals Force 17 1.2.7. Repulsive Electrical Double-layer Force 18 1.2.8. Ion Dispersion Forces 19 1.3. Protein Phase Diagram 20 1.3.1. Phase Transition 20 1.3.2. Phase Diagram 21 1.4. Classical Spinodal Decomposition 25 1.4.1. Cahn-Hilliard Theory 25 1.4.2. Binder-Stauffer-Siggia (BSS) Theory 27 1.5. Viscoelastic Phase Separation 29 1.5.1. The Moving Droplet Phase 30 1.6. Fractal Aggregation Model 32 1.7. The Purpose of This Thesis 33 Chapter 2. Experimental Section 34 2.1. Materials 34 2.2. Sample Preparation 35 2.3. Experimental Methods 35 2.3.1. UV-Visible/NIR Spectrophotometer (UV-Vis) 35 2.3.2. Micro Refrigerated High-Speed Centrifuge 35 2.3.3. Phase Contrast Microscopy (PCM) 36 2.3.4. Laser Scanning Confocal Microscopy (LSCM) 36 2.4. Small-angle Light Scattering 36 2.4.1. Data Analysis 38 2.4.2. Calibration of the Scattering Vector 39 Chapter 3. Results and Discussion 41 3.1. Determination of Protein Concentration 41 3.2. Phase Diagram of Lysozyme Solution 43 3.2.1. Glass Line and Arrest Tie Line 47 3.2.2. Investigate Arrest Tie Line by PCM Measurement 50 3.3. Morphology of Lysozyme Solutions by PCM and LSCM Measurement 52 3.4. Phase Separation Dynamics of Lysozyme Solutions 55 Chapter 4. Conclusion 66 References 69

    1. Zbinden, A.; Pérez-Berlanga, M.; Rossi, P. D.; Polymenidou, M. Phase Separation and Neurodegenerative Diseases: A Disturbance in the Force. Dev Cell 2020, 55 (1), 45–68.
    2. Kim, H. J.; Kim, N. C.; Wang, Y.-D.; Scarborough, E. A.; Moore, J.; Diaz, Z.; MacLea, K. S.; Freibaum, B.; Li, S.; Molliex, A.; Kanagaraj, A. P.; Carter, R.; Boylan, K. B.; Wojtas, A. M.; Rademakers, R.; Pinkus, J. L.; Greenberg, S. A.; Trojanowski, J. Q.; Traynor, B. J.; Smith, B. N.; Topp, S.; Gkazi, A.-S.; Miller, J.; Shaw, C. E.; Kottlors, M.; Kirschner, J.; Pestronk, A.; Li, Y. R.; Ford, A. F.; Gitler, A. D.; Benatar, M.; King, O. D.; Kimonis, V. E.; Ross, E. D.; Weihl, C. C.; Shorter, J.; Taylor, J. P. Mutations in Prion-like Domains in hnRNPA2B1 and hnRNPA1 Cause Multisystem Proteinopathy and ALS. Nature 2013, 495 (7442), 467–473.
    3. Polymenidou, M.; Cleveland, D. W. The Seeds of Neurodegeneration: Prion-like Spreading in ALS. Cell 2011, 147 (3), 498–508.
    4. Shapiro, D. M.; Ney, M.; Eghtesadi, S. A.; Chilkoti, A. Protein Phase Separation Arising from Intrinsic Disorder: First-Principles to Bespoke Applications. J. Phys. Chem. B 2021, 125 (25), 6740–6759.
    5. Su, H.; Liu, Y.; Gao, Y.; Fu, C.; Li, C.; Qin, R.; Liang, L.; Yang, P. Amyloid-Like Protein Aggregation Toward Pesticide Reduction. Adv. Sci. 2022, 9 (13), 2105106.
    6. Huisman, A. J.; Hartsell, L. R.; Krueger, B. P.; Pikaart, M. J. Thermodynamic Exploration of Eosin−Lysozyme Binding. J. Chem. Educ. 2010, 87 (3), 299–302.
    7. Hari, D. P.; König, B. Synthetic Applications of Eosin Y in Photoredox Catalysis. Chem. Commun. 2014, 50 (51), 6688–6699.
    8. Penzkofer, A.; Beidoun, A. Triplet-Triplet Absorption of Eosin Y in Methanol Determined by Nanosecond Excimer Laser Excitation and Picosecond Light Continuum Probing. Chem. Phys. 1993, 177 (1), 203–216.
    9. Kepka, A. G.; Grossweiner, L. I. PHOTODYNAMIC INACTIVATION OF LYSOZYME BY EOSIN. Photochem. Photobiol. 1973, 18 (1), 49–61.
    10. Garrett, Reginald H., and Charles M. Grisham. Biochemistry. Cengage Learning, 2016.
    11. Segrè, P. N.; Prasad, V.; Schofield, A. B.; Weitz, D. A. Glasslike Kinetic Arrest at the Colloidal-Gelation Transition. Phys Rev Lett 2000, 86 (26), 6042–6045.
    12. Muschol, M.; Rosenberger, F. Interactions in Undersaturated and Supersaturated Lysozyme Solutions: Static and Dynamic Light Scattering Results. J Chem Phys 1995, 103 (24), 10424–10432.
    13. Tardieu, A.; Verge, A. L.; Malfois, M.; Bonneté, F.; Finet, S.; Riès-Kautt, M.; Belloni, L. Proteins in Solution:From X-Ray Scattering Intensities to Interaction Potentials. J Cryst Growth 1999, 196 (2–4), 193–203.
    14. Chen, S. C. A Study of Aggregation Behavior and Morphology of Protein in Solution. Master’s thesis, National Taiwan University of Science and Technology, Taipei, Taiwan, 2009.
    15. Hamaker, H. C. The London—van Der Waals Attraction between Spherical Particles. Physica 1937, 4 (10), 1058–1072.
    16. Lekkerkerker, H. N. W.; Tuinier, R. Colloids and the Depletion Interaction. Lect. Notes Phys. 2011, 57–108.
    17. 李以圭, 陸九芳“電解質溶液理論”,清華大學出版社, 2005.
    18. Boström, M.; Williams, D. R. M.; Ninham, B. W. Specific Ion Effects: Why the Properties of Lysozyme in Salt Solutions Follow a Hofmeister Series. Biophys. J. 2003, 85 (2), 686–694.
    19. Ninham, B. W.; Yaminsky, V. Ion Binding and Ion Specificity: The Hofmeister Effect and Onsager and Lifshitz Theories. Langmuir 1997, 13 (7), 2097–2108.
    20. Thomson, J. A.; Schurtenberger, P.; Thurston, G. M.; Benedek, G. B. Binary Liquid Phase Separation and Critical Phenomena in a Protein/Water Solution. Proc National Acad Sci 1987, 84 (20), 7079–7083.
    21. Blundell, S.; Thouless, D. Magnetism in Condensed Matter. Am. J. Phys. 2002, 71 (1), 94–95.
    22. Wolde, P. R. ten; Frenkel, D. Enhancement of Protein Crystal Nucleation by Critical Density Fluctuations. Science 1997, 277 (5334), 1975–1978.
    23. Anderson, V. J.; Lekkerkerker, H. N. W. Insights into Phase Transition Kinetics from Colloid Science. Nature 2002, 416 (6883), 811–815.
    24. Sedgwick, H.; Kroy, K.; Salonen, A.; Robertson, M. B.; Egelhaaf, S. U.; Poon, W. C. K. Non-Equilibrium Behavior of Sticky Colloidal Particles: Beads, Clusters and Gels. European Phys J E 2005, 16 (1), 77–80.
    25. Muschol, M.; Rosenberger, F. Liquid–Liquid Phase Separation in Supersaturated Lysozyme Solutions and Associated Precipitate Formation/Crystallization. J Chem Phys 1997, 107 (6), 1953–1962.
    26. Trappe, V.; Prasad, V.; Cipelletti, L.; Segre, P. N.; Weitz, D. A. Jamming Phase Diagram for Attractive Particles. Nature 2001, 411 (6839), 772–775.
    27. Pusey, P. N.; Megen, W. van. Observation of a Glass Transition in Suspensions of Spherical Colloidal Particles. Phys Rev Lett 1987, 59 (18), 2083–2086.
    28. Ramakrishnan, S.; Fuchs, M.; Schweizer, K. S.; Zukoski, C. F. Entropy Driven Phase Transitions in Colloid–Polymer Suspensions: Tests of Depletion Theories. J Chem Phys 2002, 116 (5), 2201–2212.
    29. Gibaud, T.; Schurtenberger, P. A Closer Look at Arrested Spinodal Decomposition in Protein Solutions. J. Phys.: Condens. Matter 2009, 21 (32), 322201.
    30. P. J. Flory. Principles of polymer chemistry. Cornell university press, (1953).
    31. Hashimoto, T.; Itakura, M.; Hasegawa, H. Late Stage Spinodal Decomposition of a Binary Polymer Mixture. I. Critical Test of Dynamical Scaling on Scattering Function. J Chem Phys 1986, 85 (10), 6118–6128.
    32. Cahn, J. W.; Hilliard, J. E. Free Energy of a Nonuniform System. I. Interfacial Free Energy. J Chem Phys 1958, 28 (2), 258–267.
    33. Cahn, J. W. Phase Separation by Spinodal Decomposition in Isotropic Systems. J Chem Phys 1965, 42 (1), 93–99.
    34. Lifshitz, I. M.; Slyozov, V. V. The Kinetics of Precipitation from Supersaturated Solid Solutions. J Phys Chem Solids 1961, 19 (1–2), 35–50.
    35. Wagner, C. Theorie Der Alterung von Niederschlägen Durch Umlösen (Ostwald-Reifung). Z. für Elektrochem., Berichte Bunsenges. für Phys. Chem. 1961, 65 (7–8), 581–591.
    36. Onuki, Akira. Phase transition dynamics. Cambridge University Press, 2002.
    37. Siggia, E. D. Late Stages of Spinodal Decomposition in Binary Mixtures. Phys Rev A 1979, 20 (2), 595–605.
    38. Binder, K.; Stauffer, D. Theory for the Slowing Down of the Relaxation and Spinodal Decomposition of Binary Mixtures. Phys. Rev. Lett. 1974, 33 (17), 1006–1009.
    39. Tanaka, H. Coarsening Mechanisms of Droplet Spinodal Decomposition in Binary Fluid Mixtures. J Chem Phys 1996, 105 (22), 10099–10114.
    40. Kuwahara, N.; Sato, H.; Kubota, K. Kinetics of Spinodal Decomposition in a Polymer Mixture. Phys. Rev. E 1993, 47 (2), 1132–1138.
    41. Perrot, F.; Guenoun, P.; Baumberger, T.; Beysens, D.; Garrabos, Y.; Neindre, B. L. Nucleation and Growth of Tightly Packed Droplets in Fluids. Phys. Rev. Lett. 1994, 73 (5), 688–691.
    42. Koga, T.; Kawasaki, K. Late Stage Dynamics of Spinodal Decomposition in Binary Fluid Mixtures. Phys. A: Stat. Mech. Appl. 1993, 196 (3), 389–415.
    43. Roy, S.; Das, S. K. Dynamics and Growth of Droplets Close to the Two-Phase Coexistence Curve in Fluids. Soft Matter 2013, 9 (16), 4178–4187.
    44. Shimizu, R.; Tanaka, H. A Novel Coarsening Mechanism of Droplets in Immiscible Fluid Mixtures. Nat. Commun. 2015, 6 (1), 7407.
    45. Hohenberg, P. C.; Halperin, B. I. Theory of Dynamic Critical Phenomena. Rev. Mod. Phys. 1977, 49 (3), 435–479.
    46. Tanaka, H. Unusual Phase Separation in a Polymer Solution Caused by Asymmetric Molecular Dynamics. Phys. Rev. Lett. 1993, 71 (19), 3158–3161.
    47. Tanaka, H. Universality of Viscoelastic Phase Separation in Dynamically Asymmetric Fluid Mixtures. Phys Rev Lett 1996, 76 (5), 787–790.
    48. Tanaka, H. Viscoelastic Phase Separation. J Phys Condens Matter 2000, 12 (15), R207.
    49. Tanaka, H. Formation of Network and Cellular Structures by Viscoelastic Phase Separation. Adv. Mater. 2009, 21 (18), 1872–1880.
    50. Tanaka, H. Viscoelastic Phase Separation in Soft Matter and Foods. Faraday Discuss 2012, 158 (1), 371–406.
    51. Tanaka, H.; Nishikawa, Y. Viscoelastic Phase Separation of Protein Solutions. Phys Rev Lett 2005, 95 (7), 078103.
    52. Poon, W. C. K. The Physics of a Model Colloid–Polymer Mixture. J. Phys.: Condens. Matter 2002, 14 (33), R859.
    53. Tanaka, H.; Araki, T. Viscoelastic Phase Separation in Soft Matter: Numerical-Simulation Study on Its Physical Mechanism. Chem. Eng. Sci. 2006, 61 (7), 2108–2141.
    54. Rubinsten, Michael. Polymer physics. United States of America, 2003.
    55. Witten, T. A.; Sander, L. M. Diffusion-Limited Aggregation. Phys Rev B 1983, 27 (9), 5686–5697.
    56. Lin, M. Y.; Lindsay, H. M.; Weitz, D. A.; Ball, R. C.; Klein, R.; Meakin, P. Universal Reaction-Limited Colloid Aggregation. Phys Rev A 1990, 41 (4), 2005–2020.
    57. Lin, M. Y.; Lindsay, H. M.; Weitz, D. A.; Klein, R.; Ball, R. C.; Meakin, P. Universal Diffusion-Limited Colloid Aggregation. J Phys Condens Matter 1990, 2 (13), 3093.
    58. Fleming, Alexander. "On a remarkable bacteriolytic element found in tissues and secretions." Proceedings of the Royal Society of London. Series B, Containing Papers of a Biological Character 93.653 (1922): 306-317.
    59. Taratuta, V. G.; Holschbach, A.; Thurston, G. M.; Blankschtein, D.; Benedek, G. B. Liquid-Liquid Phase Separation of Aqueous Lysozyme Solutions: Effects of pH and Salt Identity. J. Phys. Chem. 1990, 94 (5), 2140–2144.
    60. Wu, Tiantian, et al. "What is new in lysozyme research and its application in food industry? A review." Food chemistry 274 (2019): 698-709.
    61. Anastas, Paul T., et al. "A review of immobilization techniques to improve the stability and bioactivity of lysozyme." Green Chemistry Letters and Reviews 14.2 (2021): 302-338.
    62. Sophianopoulos, A. J., et al. "Physical studies of lysozyme: I. Characterization." Journal of Biological Chemistry 237.4 (1962): 1107-1112.
    63. Chu, S. J. A Study on Phase Separation Behavior of Lysozyme Solution. Master’s thesis, National Taiwan University of Science and Technology, Taipei, Taiwan, 2023.
    64. Cardinaux, F.; Gibaud, T.; Stradner, A.; Schurtenberger, P. Interplay between Spinodal Decomposition and Glass Formation in Proteins Exhibiting Short-Range Attractions. Phys. Rev. Lett. 2007, 99 (11), 118301.
    65. Baugher, J. F.; Grossweiner, L. I.; Lewis, C. Intramolecular Energy Transfer in the Lysozyme–Eosin Complex. J. Chem. Soc., Faraday Trans. 2: Mol. Chem. Phys. 1974, 70 (0), 1389–1398.
    66. Bhat, S.; Tuinier, R.; Schurtenberger, P. Spinodal Decomposition in a Food Colloid–Biopolymer Mixture: Evidence for a Linear Regime. J. Phys.: Condens. Matter 2006, 18 (26), L339.

    QR CODE