簡易檢索 / 詳目顯示

研究生: 顏永霖
Yung-Lin Yen
論文名稱: 添加不同鍛燒溫度與時間下稻殼灰之砂漿力學與耐久性質
Mechanical Properties and Durability of Mortar with Rice Husk Ashes Calcined under Different Temperature and Time
指導教授: 陳君弢
Chun-Tao Chen
口試委員: 張大鵬
Tapeng Chang
黃兆龍
Chao-Lung Huang
學位類別: 碩士
Master
系所名稱: 工程學院 - 營建工程系
Department of Civil and Construction Engineering
論文出版年: 2015
畢業學年度: 103
語文別: 中文
論文頁數: 106
中文關鍵詞: 稻殼灰燃燒條件水泥砂漿力學性質耐久性質
外文關鍵詞: rice husk ash, burning condition, mortar, mechanical properties, durability
相關次數: 點閱:670下載:1
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

水泥水化會產生大量二氧化碳,如何減少水泥的用量在配比設計中一個重要的考量,本研究探討添加稻殼灰於水泥砂漿後的力學與耐久性質。試驗過程中,先於不同溫度(400-1000%°C)下燃燒稻殼,將稻殼灰研磨後進行X光繞射分析試驗,結果顯示在800和1000 °C的溫度下,晶形二氧化矽繞射強度高。大量產出稻殼灰後,首先進行CNS 3036規範所提及的相關試驗,目的在於檢測稻殼灰的可用性。結果顯示稻殼灰的性質符合規範所要求的。接著以ACI配比設計水灰比0.6的水泥砂漿,分別用5%、10%和20%的稻殼灰體積取代水泥進行抗壓強度,結果顯示添加比例10%的效益最為明顯,但是使用800和1000 °C鍛燒溫度下的稻殼灰無明顯差異。耐久性試驗中,結果顯示無論溫度條件(800或1000 °C)和取代比例(5-20%),乾縮增加量並沒有明顯的變化,但是可抑制因鹼矽粒料反應所造成的膨脹,在取代量10%的時候即可有效減少膨脹量88%,而取代量到20%時的膨脹量微乎其微,其中使用鍛燒溫度800 °C的稻殼灰抑制鹼矽粒料反應比溫度1000 °C的稻殼灰效果好。


This study explores the mechanical properties and durability of mortar with rice husk ash. During the experiments, the rice husk was calcined under different temperature (400-1000%°C) and then ground for XRD analyses. Results showed that the crystalline silica existed at temperature of 800 and 1000 °C. After large amounts of rice husk ash were produced, experiments in accordance to CNS 3036 were conducted to explore the feasibility of the rice husk ash. Results showed that the properties of the rice husk ash met the requirements. Then, the mortar was prepared at w/c of 0.6 using ACI mix design, the cement in mortar was replaced by rice husk ash by 5%, 10% and 20% by volume, and the compressive strengths of the mortar were conducted. Results showed that the 10% was the optimum. There were no significant differences in specimens with rice husk ash calcined under 800 and 1000 °C. During the durability measurements, results showed that the shrinkage did not change significantly with the temperature (800 or 1000 °C) and dosage of the rice husk ash (5-20%) but the expansion due to the alkali-silica reaction was effectively inhibited at 10% by 88%. Little expansion was found at 20%. Rice husk ash calcined by 800 °C had better inhibition on ASR expansion than that calcined by 1000 °C.

摘要 I Abstract II 目錄 III 表目錄 IV 圖目錄 V 第一章 緒論 1 1.1 研究動機 1 1.2 研究目的 1 1.3 研究方法與流程 2 第二章 文獻回顧 4 2.1 生質燃料來源與種類 4 2.2 生質燃料飛灰成分與性質 7 2.3 生質燃料飛灰應用於混凝土之性質 10 2.4 稻殼灰應用於混凝土中的性質 11 2.5 飛灰使用之標準 13 第三章 試驗規劃 21 3.1 試驗變數 21 3.2 試驗材料與設備 22 3.3 試驗設計與項目 26 第四章 試驗結果與分析 50 4.1 前言 50 4.2 先期試驗 50 4.3 稻殼灰相關試驗性質 52 4.4 耐久性性質 56 4.5 微觀分析 60 4.6 總結 61 第五章 結論與建議 100 5.1 結論 100 5.2 建議 101 參考文獻 102

2015, A. i. (2014). Standard Test Method for Compressive Strength of Cylindrical Concrete Specimens. ASTM C39/C39M-14. West Conshohocken,PA, ASTM International.
A. Maciejewska, H. V., J. Sanders& S.D. Peteves . (2006). "Co-firing Biomass with coal : Constrains and Role of Biomass Pre-treatment (EUR 22461 EN)." Retrieved from DG JR Institute for Energy.
A.K. Yeoh, R. B., C.N. Chong, C.Y. Tay (197). The relationship between temperature and duration of burning of rice-husk in the development of amorphous rice-husk ash silica
Proceedings of UNIDO/ESCAP/RCTT, Follow-up Meeting on Rice-Husk Ash Cement,, Alor Setar, Malaysia.
Al-Mansour, F. and Zuwala, J. (2010). "An evaluation of biomass co-firing in Europe." Biomass and Bioenergy 34(5): 620-629.
ASTM-C150/C150M-12 (2012). Standard Specification for Portland Cement. West Conshohocken,PA, ASTM International.
ASTM-C305-13 (2013). Standard Practice for Mechanical Mixing of Hydraulic Cement Pastes and Mortars of Plastic Consistency. West Conshohocken,PA, ASTM International.
ASTM-C441/C441M-11 (2011). Standard Test Method for Effectiveness of Pozzolans or Ground Blast-Furnace Slag in Preventing Excessive Expansion of Concrete Due to the Alkali-Silica Reaction. West Conshohocken, PA, ASTM International.
ASTM-C778 (2013). Standard Specification for Standard Sand. West Conshohocken,PA, ASTM International.
ASTM-C1260-14 (2014). Standard Test Method for Potential Alkali Reactivity of Aggregates (Mortar-Bar Method). West Conshohocken, PA, ASTM International.
Bridgeman, T. G., Darvell, L. I., Jones, J. M., Williams, P. T., Fahmi, R., Bridgwater, A. V., Barraclough, T., Shield, I., Yates, N., Thain, S. C. and Donnison, I. S. (2007). "Influence of particle size on the analytical and chemical properties of two energy crops." Fuel 86(1–2): 60-72.
Bridgeman, T. G., Darvell, L. I., Jones, J. M., Williams, P. T., Fahmi, R., Bridgwater, A. V., Donnison, I. S. (2007). "Influence of particle size on the analytical and chemical properties of two energy crops." Fuel 86(1-2): 60-72.
Calderon, C. (2013). European Bioenergy Outlook 2013.
Cheah, C. B. and Ramli, M. (2011). "The implementation of wood waste ash as a partial cement replacement material in the production of structural grade concrete and mortar: An overview." Resources, Conservation and Recycling 55(7): 669-685.
CNS1010 (2011). 水硬性水泥墁料抗壓強度檢驗法(用50mm或2in.立方體試體). 經濟部標準檢驗局, 中華民國國家標準.
CNS1258 (2010). 卜特蘭水尼熱壓膨脹試驗法. 經濟部標準檢驗局,, 中華民國國家標準.
CNS3036 (2003). 混凝土用飛灰及天然或煆燒卜作嵐攙和物. 經濟部標準檢驗局, 中華民國國家標準.
CNS10896 (2003). 卜特蘭水泥混凝土用飛灰或天然卜作嵐礦物摻料之取樣及檢驗法. 經濟部標準檢驗局, 中華民國國家標準.
CNS11273 (2011). 水硬性水泥以試驗篩0.045 mm CNS386濕篩試驗法. 經濟部標準檢驗局, 中華民國國家標準.
CNS14603 (2011). 硬固水泥砂漿及混凝土長度試驗法. 經濟部標準檢驗局, 中華民國國家標準.
Cook, D. J. (1984). Development of microstructure & other properties in Rice Husk Ash-OPC systems,The ninth Australasian conference on the mechanics of structures and material 29-31, School of Civil and Mining Engineering, University of Sydney.
Demirbaş, A. (2003). "Sustainable cofiring of biomass with coal." Energy Conversion and Management 44(9): 1465-1479.
Esteves, T. C., Rajamma, R., Soares, D., Silva, A. S., Ferreira, V. M. and Labrincha, J. A. (2012). "Use of biomass fly ash for mitigation of alkali-silica reaction of cement mortars." Construction and Building Materials 26(1): 687-693.
Ganesan, K., Rajagopal, K. and Thangavel, K. (2008). "Rice husk ash blended cement: Assessment of optimal level of replacement for strength and permeability properties of concrete." Construction and Building Materials 22(8): 1675-1683.
Grammelis, P., Skodras, G. and Kakaras, E. (2006). "Effects of biomass co-firing with coal on ash properties. Part I: Characterisation and PSD." Fuel 85(16): 2310-2315.
Hernández, J. J., Aranda-Almansa, G. and Bula, A. (2010). "Gasification of biomass wastes in an entrained flow gasifier: Effect of the particle size and the residence time." Fuel Processing Technology 91(6): 681-692.
Johnson, A., Catalan, L. J. J. and Kinrade, S. D. (2010). "Characterization and evaluation of fly-ash from co-combustion of lignite and wood pellets for use as cement admixture." Fuel 89(10): 3042-3050.
Kalembkiewicz, J. and Chmielarz, U. (2012). "Ashes from co-combustion of coal and biomass: New industrial wastes." Resources, Conservation and Recycling 69(0): 109-121.
Kastanaki, E. and Vamvuka, D. (2006). "A comparative reactivity and kinetic study on the combustion of coal–biomass char blends." Fuel 85(9): 1186-1193.
Khan, R., Jabbar, A., Ahmad, I., Khan, W., Khan, A. N. and Mirza, J. (2012). "Reduction in environmental problems using rice-husk ash in concrete." Construction and Building Materials 30: 360-365.
Lewandowski, I., Clifton-Brown, J. C., Scurlock, J. M. O., & Huisman, W. (2000). "Miscanthus: European experience with a novel energy crop." Biomass and Bioenergy 19(4): 209-227.
Llorente, M. J. F., & García, J. E. C. (2006). "Concentration of elements in woody and herbaceous biomass as a function of the dry ashing temperature." Fuel 85(9): 1273-1279.
Martirena, F., Middendorf, B., Day, R. L., Gehrke, M., Roque, P., Martínez, L., & Betancourt, S. (2006). "Rudimentary, low tech incinerators as a means to produce reactive pozzolan out of sugar cane straw." Cement and Concrete Research 36(6): 1056-1061.
Naik, T. R., & Kraus, R. N. (2003). " A new source of pozzolanic material." Concrete Int 25(12): 55-62.
Nehdi, M., Duquette, J. and El Damatty, A. (2003). "Performance of rice husk ash produced using a new technology as a mineral admixture in concrete." Cement and Concrete Research 33(8): 1203-1210.
Pritz, P. K. M. a. D. (1978). Use of Rice Husk Ash to reduce temperature in High Strength Mass Concrete. ACI Journal: 60-63.
Rajamma, R., Ball, R. J., Tarelho, L. A. C., Allen, G. C., Labrincha, J. A. and Ferreira, V. M. (2009). "Characterisation and use of biomass fly ash in cement-based materials." Journal of Hazardous Materials 172(2–3): 1049-1060.
Rodríguez de Sensale, G. (2006). "Strength development of concrete with rice-husk ash." Cement and Concrete Composites 28(2): 158-160.
Sami, M., Annamalai, K. and Wooldridge, M. (2001). "Co-firing of coal and biomass fuel blends." Progress in Energy and Combustion Science 27(2): 171-214.
Saraswathy, V. and Song, H.-W. (2007). "Corrosion performance of rice husk ash blended concrete." Construction and Building Materials 21(8): 1779-1784.
Singh, S., Ram, L. C., Masto, R. E. and Verma, S. K. (2011). "A comparative evaluation of minerals and trace elements in the ashes from lignite, coal refuse, and biomass fired power plants." International Journal of Coal Geology 87(2): 112-120.
Singh, S., Ram, L. C., Masto, R. E., & Verma, S. K. (2011). "A comparative evaluation of minerals and trace elements in the ashes from lignite, coal refuse, and biomass fired power plants." International Journal of Coal Geology 87(2): 112-120.
Steenari, B. M. and Karlfeldt Fedje, K. (2010). "Addition of kaolin as potassium sorbent in the combustion of wood fuel – Effects on fly ash properties." Fuel 89(8): 2026-2032.
Thy, P., Jenkins, B. M., Grundvig, S., Shiraki, R., & Lesher, C. E. (2006). "High temperature elemental losses and mineralogical changes in common biomass ashes. ." Fuel 85(5-6): 783-795.
Tkaczewska, E. and Małolepszy, J. (2009). "Hydration of coal–biomass fly ash cement." Construction and Building Materials 23(7): 2694-2700.
Tuan, B. L. A. (2012). The use of black rice husk ash in concrete, Department of Construction Engineering, NTUST.
Vamvuka, D. and Kakaras, E. (2011). "Ash properties and environmental impact of various biomass and coal fuels and their blends." Fuel Processing Technology 92(3): 570-581.
Waliuddin, M. S. I. a. A. M. (1996). "Effect of rice husk ash on high strength concrete." Construction and Building Material: 521-526.
Wang, S. and Baxter, L. (2007). "Comprehensive study of biomass fly ash in concrete: Strength, microscopy, kinetics and durability." Fuel Processing Technology 88(11–12): 1165-1170.
Wang, S., Miller, A., Llamazos, E., Fonseca, F. and Baxter, L. (2008). "Biomass fly ash in concrete: Mixture proportioning and mechanical properties." Fuel 87(3): 365-371.
Wiselogel, A. E., Agblevor, F. A., Johnson, D. K., Deutch, S., Fennell, J. A., & Sanderson, M. A. (1996). "Compositional changes during storage of large round switchgrass bales." Bioresource Technology 56(1): 103-109.
Wu, C. L. H. a. D. S. (1989). Properties of cement paste containing Rice Husk Ash. Detroit, Trondheim, Norway,
, ACI: 733-765.
Yu, Q., Sawayama, K., Sugita, S., Shoya, M., & Isojima, Y. (1999). "Reaction between rice husk ash and Ca(OH)2 solution and the nature of its product." Cement and Concrete Research 29(1): 37-43.
Zain, M. F. M., Islam, M. N., Mahmud, F. and Jamil, M. (2011). "Production of rice husk ash for use in concrete as a supplementary cementitious material." Construction and Building Materials 25(2): 798-805.
周楚洋 (2012). 國內生質燃料的料源調查與應用評估計畫. 行政院環境保護署環境檢驗所委託之專題研究成果報告(編號:EPA-101-1605-02-05). 台北市, 環保署.
段菁春、肖軍、王傑林、莊新國 (2004). "生物質與煤共燃技術." 電站系統工程 20-1.
張華鋼 (2008). 秸稈燃燒特性研究, 東南大學.
張慶源 (2013). 生質燃料應用評估與示範. 行政院環境保護署環境檢驗所委託之專題研究成果報告(編號:EPA-101-1605-02-03). 台北市, 環保署.
劉秀美、蔡馥嚀 (2010). "農業廢棄物生產木質分解酵素之研究." 農業生技產業季刊 安全農業2010 24.

無法下載圖示 全文公開日期 2020/08/27 (校內網路)
全文公開日期 本全文未授權公開 (校外網路)
全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
QR CODE