簡易檢索 / 詳目顯示

研究生: 王博生
Bo-Sheng Wang
論文名稱: 以反電勢估測器及滑動模式觀測器達成永磁同步電動機無轉軸偵測元件驅動系統的研製
Implementation of Back-EMF Estimator and Sliding-Mode Observer for Sensorless PMSM Drive Systems
指導教授: 劉添華
Tian-Hua Liu
口試委員: 吳財福
Tsai-Fu Wu
楊勝明
Sheng-Ming Yang
楊士進
Shih-Chin Yang
林長華
Chang-Hua Lin
學位類別: 碩士
Master
系所名稱: 電資學院 - 電機工程系
Department of Electrical Engineering
論文出版年: 2022
畢業學年度: 110
語文別: 中文
論文頁數: 165
中文關鍵詞: 反電勢估測器滑動模式觀測器高速弱磁永磁同步電動機
外文關鍵詞: back-EMF estimator, sliding mode observer, flux-weakening, permanent magnet synchronous motor
相關次數: 點閱:203下載:4
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

本文探討以反電勢估測器與滑動模式觀測器達成永磁同步電動機的轉軸角度估測,並進一步完成無轉軸偵測元件永磁同步電動機驅動系統的研製。實測結果說明反電勢估測器的控速範圍為50 r/min到2160 r/min,而滑動模式觀測器的控速範圍為45 r/min到2160 r/min。在中、高轉速穩態時,反電勢估測器具有較小的估測誤差,但滑動模式觀測器具有較佳的強健性,對參數變化較不靈敏。
為了擴展無轉軸角度偵測元件永磁同步電動機驅動系統的控速範圍,文中亦探討使用高速弱磁控制,使系統能操作在比額定轉速更高速的工作區域。
文中使用德州儀器公司所生產的數位信號處理器TMS320F28035作為控制器的核心,實現反電勢估測器及滑動模式觀測器,以及高速弱磁控制。並進一步探討角度估測誤差的原因,實測結果與相關的分析結果相當接近,說明本文的可行性及正確性。


This thesis investigates the back-EMF estimator and the sliding-mode observer of rotor position estimated methods for permanent magnet synchronous motor drive systems. In addition, a sensorless permanent magnet synchronous motor dirve system has been implemented. Experimental results show that the back-EMF estimator has an adjustable speed range from 50 r/min to 2160 r/min. On the other hand, the sliding mode observer has an adjustable speed range from 45 r/min to 2160 r/min. The back-EMF estimator has smaller estimated errors in steady-state than the sliding-mode observer when the motor is operated in middle- speed to high-speed ranges. However, the sliding-mode observer, which is insensitive to the variations of the motor parameter, provides better robustness than the back-EMF estimator.
To extend the adjustable speed of the sensorless PMSM drive systems, the flux-weakening control which can be operated at a higher speed range than rated speed, is also investigated.
A digital signal processor, manufactured by Texas Instruments, TMS320F28035, is used as a control center to implement the back-EMF estimator, sliding-mode observer, and high-speed flux weakening. In addition, the reason of the estimated rotor position errors, including back-EMF estimator and sliding-mode observer, is discussed. Experimental results can verify the theoretical analysis, and show the correctness and feasibility of this thesis.

摘要 I Abstract II 目錄 III 圖目錄 VI 表目錄 X 符號索引 XI 第一章 緒論 1 1.1 研究動機 1 1.2 文獻回顧 4 1.3 大綱 7 第二章 表面黏貼式永磁同步電動機 8 2.1 簡介 8 2.2 結構與特性 8 2.3 數學模型 12 2.4 參數測量 19 2.4.1 電阻測量 19 2.4.2 電感測量 20 2.4.3 磁通鏈測量 22 第三章 永磁同步電動機驅動系統 23 3.1 簡介 23 3.2 變頻器及脈波寬度調變方法 23 3.3 閉迴控制 34 3.4 高速弱磁控制 36 第四章 轉軸角/速度估測方法 39 4.1 簡介 39 4.2 反電勢估測器 39 4.3 滑動模式觀測器 44 4.4 轉軸角度估測的近似誤差分析 53 4.4.1 類比/數位轉換器造成的誤差 54 4.4.2 低通濾波器造成的誤差 57 4.4.3 觀測器增益造成的誤差 60 4.4.4 反正切函數造成的誤差 61 4.4.5 直流鏈電壓造成的誤差 62 4.4.6 電動機電流造成的誤差 63 第五章 系統研製 65 5.1 簡介 65 5.2 硬體電路 67 5.2.1 三相變頻器 67 5.2.2 閘極驅動電路 70 5.2.3 電源電路 71 5.2.4 電流偵測電路 74 5.2.5 電壓偵測電路 76 5.2.6 過電流保護電路 78 5.2.7 數位訊號處理器 80 5.3 軟體程式 81 5.3.1 主程式 81 5.3.2 反電勢估測器中斷程式 83 5.3.3 滑動模式觀測器中斷程式 85 第六章 實測結果 87 6.1 簡介 87 6.2 實測結果 90 第七章 結論及未來研究方向 137 參考文獻 139

[1] V. Repecho, J. B. Waqar, D. Biel, and A. Dòria-Cerezo, "Zero speed sensorless scheme for permanent magnet synchronous machine under decoupled sliding-mode control," IEEE Transactions on Industrial Electronics, vol. 69, no. 2, pp. 1288-1297, Feb. 2022.
[2] H. Lee and J. Lee, "Design of iterative sliding mode observer for sensorless PMSM control," IEEE Transactions on Control Systems Technology, vol. 21, no. 4, pp. 1394-1399, Jul. 2013.
[3] A. Dalal and P. Kumar, "Analytical model for permanent magnet motor with slotting effect, armature reaction, and ferromagnetic material property," IEEE Transactions on Magnetics, vol. 51, no. 12, pp. 1-10, Dec. 2015.
[4] J. D. Santiago, H. Bernhoff, B. Ekergård, S. Eriksson, and S. Ferhatovic, "Electrical motor drivelines in commercial all-electric vehicles: a review," IEEE Transactions on Vehicular Technology, vol. 61, no. 2, pp. 475-484, Feb. 2012.
[5] P. C. Sen, "Electric motor drives and control-past, present, and future," IEEE Transactions on Industrial Electronics, vol. 37, no. 6, pp. 562-575, Dec. 1990.
[6] S. L. Ho, S. Niu, and W. N. Fu, "A novel solid-rotor induction motor with skewed slits in radial and axial directions and its performance analysis using finite element method," IEEE Transactions on Applied Superconductivity, vol. 20, no. 3, pp. 1089-1092, Jun. 2010.
[7] H. Kim, J. Son, and J. Lee, "A high-speed sliding-mode observer for the sensorless speed control of a PMSM," IEEE Transactions on Industrial Electronics, vol. 58, no. 9, pp. 4069-4077, Sep. 2011.
[8] L. Durantay, N. Velly, J. Pradurat, and M. Chisholm, "New testing method for large high-speed induction motors," IEEE Transactions on Industry Applications, vol. 53, no. 1, pp. 660-666, Jan. / Feb. 2017.
[9] T. Nakamura, H. Nishio, N. Amemiya, K. Kajikawa, and T. Wakuda, "Performance of induction/synchronous motor having MgB2 cage windings for liquid hydrogen circulation pump," IEEE Transactions on Applied Superconductivity, vol. 22, no. 3, pp. 5200404-5200404, Jun. 2012.
[10] J. Su, R. Gao, and I. Husain, "Model predictive control-based field-weakening strategy for traction EV used induction motor," IEEE Transactions on Industry Applications, vol. 54, no. 3, pp. 2295-2305, May/ Jun. 2018.
[11] O. Payza, Y. Demir, and M. Aydin, "Investigation of losses for a concentrated winding high-speed permanent magnet-assisted synchronous reluctance motor for washing machine application," IEEE Transactions on Magnetics, vol. 54, no. 11, pp. 1-5, Nov. 2018.
[12] N. Bianchi, S. Bolognani, E. Carraro, M. Castiello, and E. Fornasiero, "Electric vehicle traction based on synchronous reluctance motors," IEEE Transactions on Industry Applications, vol. 52, no. 6, pp. 4762-4769, Nov. / Dec. 2016.
[13] J. K. Nøland, S. Nuzzo, A. Tessarolo, and E. F. Alves, "Excitation system technologies for wound-field synchronous machines: survey of solutions and evolving trends," IEEE Access, vol. 7, pp. 109699-109718, 2019.
[14] R. Ni, D. Xu, G. Wang, X. Gui, G. Zhang, H. Zhan, and C. Li, "Efficiency enhancement of general AC drive system by remanufacturing induction motor with interior permanent-magnet rotor," IEEE Transactions on Industrial Electronics, vol. 63, no. 2, pp. 808-820, Feb. 2016.
[15] D. Xu, B. Wang, G. Zhang, G. Wang, and Y. Yu, "A review of sensorless control methods for AC motor drives," CES Transactions on Electrical Machines and Systems, vol. 2, no. 1, pp. 104-115, Mar. 2018.
[16] K. Kim, "A novel method for minimization of cogging torque and torque ripple for interior permanent magnet synchronous motor," IEEE Transactions on Magnetics, vol. 50, no. 2, pp. 793-796, Feb. 2014.
[17] N. Zhao and W. Liu, "Loss calculation and thermal analysis of surface-mounted PM motor and interior PM motor," IEEE Transactions on Magnetics, vol. 51, no. 11, pp. 1-4, Nov. 2015.
[18] G. Liu, H. Zhang, and X. Song, "Position-estimation deviation-suppression technology of PMSM combining phase self-compensation SMO and feed-forward PLL," IEEE Journal of Emerging and Selected Topics in Power Electronics, vol. 9, no. 1, pp. 335-344, Feb. 2021.
[19] J. Hu, J. Zou, F. Xu, Y. Li, and Y. Fu, "An improved PMSM rotor position sensor based on linear hall sensors," IEEE Transactions on Magnetics, vol. 48, no. 11, pp. 3591-3594, Nov. 2012.
[20] V. Šmídl and Z. Peroutka, "Advantages of square-root extended kalman filter for sensorless control of AC drives," IEEE Transactions on Industrial Electronics, vol. 59, no. 11, pp. 4189-4196, Nov. 2012.
[21] O. C. Kivanc and S. B. Ozturk, "Sensorless PMSM drive based on stator feedforward voltage estimation improved with MRAS multiparameter estimation," IEEE/ASME Transactions on Mechatronics, vol. 23, no. 3, pp. 1326-1337, Jun. 2018.
[22] D. Yousfi and A. A. Ouahman, "VI-model based estimator versus hall sensor-based estimator in brushless AC sensorless drives," 18th Mediterranean Conference on Control and Automation, Jun. 2010.
[23] Z. Ma and X. Zhang, "FPGA implementation of sensorless sliding mode observer with a novel rotation direction detection for PMSM drives," IEEE Access, vol. 6, pp. 55528-55536, 2018.
[24] H. A. Hamed, Z. M. Elbarbary, M. S. E. Moursi, and P. K. Chamarthi, "A new δ-MRAS method for motor speed estimation," IEEE Transactions on Power Delivery, vol. 36, no. 3, pp. 1903-1906, Jun. 2021.
[25] G. Wang, M. Valla, and J. Solsona, "Position sensorless permanent magnet synchronous machine drives—a review," IEEE Transactions on Industrial Electronics, vol. 67, no. 7, pp. 5830-5842, Jul. 2020.
[26] F. Lin, Y. Hung, J. Chen, and C. Yeh, "Sensorless IPMSM drive system using saliency back-EMF-based intelligent torque observer with MTPA control," IEEE Transactions on Industrial Informatics, vol. 10, no. 2, pp. 1226-1241, May 2014.
[27] M. A. Vogelsberger, S. Grubic, T. G. Habetler, and T. M. Wolbank, "Using PWM-induced transient excitation and advanced signal processing for zero-speed sensorless control of AC machines," IEEE Transactions on Industrial Electronics, vol. 57, no. 1, pp. 365-374, Jan. 2010.
[28] H. Li, X. Zhang, S. Yang, and S. Liu, "Unified graphical model of high-frequency signal injection methods for PMSM sensorless control," IEEE Transactions on Industrial Electronics, vol. 67, no. 6, pp. 4411-4421, Jun. 2020.
[29] D. D. Reigosa, D. Fernandez, Z. Zhu, and F. Briz, "PMSM magnetization state estimation based on stator-reflected PM resistance using high-frequency signal injection," IEEE Transactions on Industry Applications, vol. 51, no. 5, pp. 3800-3810, Sep. / Oct. 2015.
[30] D. Kim, Y. C. Kwon, S. K. Sul, J. H. Kim, and R. S. Yu, "Suppression of injection voltage disturbance for high-frequency square-wave injection sensorless drive with regulation of induced high-frequency current ripple," IEEE Transactions on Industry Applications, vol. 52, no. 1, pp. 302-312, Jan. / Feb. 2016.
[31] G. Foo and M. F. Rahman, "Sensorless sliding-mode MTPA control of an IPM synchronous motor drive using a sliding-mode observer and HF signal injection," IEEE Transactions on Industrial Electronics, vol. 57, no. 4, pp. 1270-1278, Apr. 2010.
[32] B. J. Kang and C. M. Liaw, "A robust hysteresis current-controlled PWM inverter for linear PMSM driven magnetic suspended positioning system," IEEE Transactions on Industrial Electronics, vol. 48, no. 5, pp. 956-967, Oct. 2001.
[33] J. Rodriguez and P. Cortes, Predictive Control of Power Converters and Electrical Drives, Wiley-IEEE, 2012.
[34] Y. P. Yang and M. T. Peng, "A surface-mounted permanent-magnet motor with sinusoidal pulsewidth-modulation-shaped magnets," IEEE Transactions on Magnetics, vol. 55, no. 1, pp. 1-8, Jan. 2019.
[35] M. A. Hannan, J. A. Ali, P. J. Ker, A. Mohamed, M. S. H. Lipu, and A. Hussain, "Switching techniques and intelligent controllers for induction motor drive: issues and recommendations," IEEE Access, vol. 6, pp. 47489-47510, 2018.
[36] S. M. Suhel and R. Maurya, "A new switching sequences of SVPWM for six-phase induction motor with features of reduced switching losses," CES Transactions on Electrical Machines and Systems, vol. 5, no. 2, pp. 100-107, Jun. 2021.
[37] W. Liang, J. Wang, P. C. Luk, W. Fang, and W. Fei, "Analytical modeling of current harmonic components in PMSM drive with voltage-source inverter by SVPWM technique," IEEE Transactions on Energy Conversion, vol. 29, no. 3, pp. 673-680, Sep. 2014.
[38] M. Tursini, E. Chiricozzi, and R. Petrella, "Feedforward flux-weakening control of surface-mounted permanent-magnet synchronous motors accounting for resistive voltage drop," IEEE Transactions on Industrial Electronics, vol. 57, no. 1, pp. 440-448, Jan. 2010.
[39] J. J. Chen and K. P. Chin, "Minimum copper loss flux-weakening control of surface mounted permanent magnet synchronous motors," IEEE Transactions on Power Electronics, vol. 18, no. 4, pp. 929-936, Jul. 2003.
[40] Q. Yuan, Y. Yang, H. Wu, and H. Wu, "Low speed sensorless control based on an improved sliding mode observation and the inverter nonlinearity compensation for SPMSM," IEEE Access, vol. 8, pp. 61299-61310, 2020.
[41] D. Egorov, I. Petrov, J. J. Pyrhönen, J. Link, R. Stern, P. Sergeant, and B. Sarlioglu, "Hysteresis loss in NdFeB permanent magnets in a permanent magnet synchronous machine," IEEE Transactions on Industrial Electronics, vol. 69, no. 1, pp. 121-129, Jan. 2022.
[42] W. J. Jeon, H. Watanabe, A. Nakamoto, Y. Kamiya, and T. Onuki, "Dynamic characteristics of synchronous motors applying a plural sub-magnets scheme to the rotor," IEEE Transactions on Magnetics, vol. 35, no. 5, pp. 3574-3576, Sep. 1999.
[43] S. Yamamoto, T. Ara, S. Oda, and K. Matsuse, "Prediction of starting performance of PM motors by DC decay testing method," IEEE Transactions on Industry Applications, vol. 36, no. 4, pp. 1053-1060, Jul. / Aug. 2000.
[44] Z. Wu, Z. Yang, K. Ding, and G. He, "Transfer mechanism analysis of injected voltage harmonic and its effect on current harmonic regulation in FOC PMSM," IEEE Transactions on Power Electronics, vol. 37, no. 1, pp. 820-829, Jan. 2022.
[45] J. Lara, J. Xu, and A. Chandra, "Effects of rotor position error in the performance of field-oriented-controlled PMSM drives for electric vehicle traction applications," IEEE Transactions on Industrial Electronics, vol. 63, no. 8, pp. 4738-4751, Aug. 2016.
[46] M. H. Rashid, Power Electronics: Circuits, Devices and Applications, Prentice Hall,1988.
[47] P. Lin and Y. Lai, "Voltage control technique for the extension of DC-link voltage utilization of finite-speed SPMSM drives," IEEE Transactions on Industrial Electronics, vol. 59, no. 9, pp. 3392-3402, Sep. 2012.
[48] V. Utkin, "Variable structure systems with sliding modes," IEEE Transactions on Automatic Control, vol. 22, no. 2, pp. 212-222, Apr. 1977.
[49] R. Isermann, Digital Control Systems, Springer, 1981.
[50] D. Liang, J. Li, and R. Qu, "Sensorless control of permanent magnet synchronous machine based on second-order sliding-mode observer with online resistance estimation," IEEE Transactions on Industry Applications, vol. 53, no. 4, pp. 3672-3682, Jul. / Aug. 2017.
[51] J. Yoo, H. S. Kim, and S. K. Sul, "Design of frequency-adaptive flux observer in PMSM drives robust to discretization error," IEEE Transactions on Industrial Electronics, vol. 69, no. 4, pp. 3334-3344, Apr. 2022.
[52] SCM1200MF series datasheet.
[53] TMS320F2803x Real-Time Microcontrollers datasheet.

QR CODE