簡易檢索 / 詳目顯示

研究生: 郭祐綱
You-Gang Guo
論文名稱: 應用橋梁安全臨界頻率比值推論模式建立橋梁健康度診斷方法
Development of Bridge Health Diagnosis Method Using Bridge Critical Frequency Ratio Inference Model
指導教授: 鄭明淵
Min-Yuan Cheng
口試委員: 廖國偉
Guo-wei Liao
郭斯傑
Sy-Jye Guo
潘南飛
Nan-Fei Pan
學位類別: 碩士
Master
系所名稱: 工程學院 - 營建工程系
Department of Civil and Construction Engineering
論文出版年: 2016
畢業學年度: 104
語文別: 中文
論文頁數: 185
中文關鍵詞: 間接量測法橋梁頻率橋梁耐震耐洪橋梁健康度SOS-LSSVM
外文關鍵詞: indirect approach, bridge frequency, Seismic assessment and scour assessment, bridge health, SOS-LSSVM
相關次數: 點閱:207下載:1
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 目前臺灣橋梁例行性檢測方式採用構件劣化評估方法(D.E.R.&U.) 目視檢測方法,優點為省時且執行容易,但缺點是檢測成果常因檢測人員不同,而有不一致現象,且僅能觀看到橋梁外部受損情形,無法評估橋梁因外力衝擊對內部性能損傷的影響,造成評估結果與儀器檢測有甚大差異。另外國內公路管理單位監測橋梁的普遍作法為直接量測法,利用安裝在橋梁墩柱之速度計,對橋梁作振動量測,其量測結果準確,可作為判斷橋梁是否安全之依據,然而台灣橋梁眾多,且多分佈於沿岸或高山縱谷間,全面安裝測量儀器費時且成本巨大,受限於預算限制,僅能針對少數重大橋梁進行監測,因此本研究擬發展快速間接量測與分析方法,藉由裝置在移動車輛上的速度計,量測擷取待測橋梁橋面板之振動頻率,進行橋梁安全評估:此方法具有移動性、迅速性、經濟性等優勢,以期解決目視檢測與直接量測法的問題。
    為了決定橋梁振動頻率基準值,作為衡量判斷橋梁是否安全標準,本研究建立橋梁有限元素模型,進行耐震耐洪側推分析,推導求得橋梁損壞前後之頻率變化比值(Rec,Rsc),此比值即可作為衡量評估橋梁健康之基準。
    然而建立所有橋梁有限元素模型進行耐洪與耐震側推分析,其過程需大量時間與人力,不可能針對所有橋梁作逐一分析求得各橋梁Rec與Rsc值,本研究應用生物共生演算法結合最小平方差支持向量機(SOS-LSSVM),推論求得其餘橋梁之Rec與Rsc,作為判斷各橋梁是否安全之振動頻率比值基準值,如此公路橋管單位即可藉由災害前後量測之橋梁振動頻率比值與基準值比較,衡量判斷橋梁封橋後能否開放通行之依據,在平時則可檢視橋梁健康度,作為橋梁維護之參考。


    Bridge routine detection method is D.E.R. &U. visual inspection in Taiwan now. The advantage of D.E.R. &U. visual inspection is easy and time-saving, but the accuracy of result depends on the inspectors’ experience. Moreover, there is much difference between assessment and measurement of equipment because this method cannot be used to assess the influence on internal damage of pillar from the external attack. Bridge inspecting often use direct approach in Taiwan Highway Administration. With the direct approach, the dynamic properties of the bridge, such as frequencies and mode shapers, are obtained from the bridge response measured by the vibration sensors directly mounted on the bridge. There are many bridges in Taiwan, especially along the coast and between the valley. Installing the direct approach’s apparatus spends a lot of time and cost. This research develop indirect approach, which is advantageous over the direct approaches in terms of portability, convenience, and economics, due to the fact that it requires sensors being installed on the vehicle instead of on the bridge.
    In order to determining the standard of bridge vibration frequency to know whether the bridge is safe or not, this research establish bridge models and do pushover analysis to speculate the variety of the bridge vibration frequency ratio(REC,RSC) from the process of pushover analysis. This ratio is a reference value to determine bridge health.
    Establish all of bridge models and do pushover analysis to speculate the variety of the bridge vibration frequency ratio from the process of pushover analysis spends a lot of time and cost. This research applied Symbiotic Organisms search-Hybrid Least Squares Support Vector Machine(SOS-LSSVM) to the Rec and Rsc of other. The result can decide the ratio of vibration frequency for the bridge safe standard. Taiwan Highway Administration can use indirect approach to measure bridge frequency in ordinary and after disaster compute a ratio, compare with Rec or Rsc. To determine enclosed bridge can open or not. To View bridge health for reference of bridge maintains regularly.

    摘要 5 Abstract 6 誌謝 7 目錄 8 圖目錄 11 表目錄 13 第一章 緒論 15 1.1 研究背景與動機 15 1.2 研究目的 18 1.3 研究範圍與限制 21 1.4 研究內容與流程 22 1.4.1 研究內容 22 1.4.2 研究流程 23 1.5 論文架構 25 第二章 文獻回顧 26 2.1橋梁檢測技術及評估法相關資料 26 2.1.1 公路橋梁檢測技術 26 2.1.2 D.E.R.&U.評估法 27 2.1.3 A.B.C.D.評估法 28 2.1.4 RC橋梁現況評估方式 29 2.2 橋梁自然振動頻率 31 2.3 橋梁振動量測簡介 33 2.4 橋梁模型建置 35 2.4.1 XTRACT軟體簡介 35 2.4.2 土壤與基礎結構互制之彈簧常數模擬 37 2.4.3 SAP2000軟體簡介 40 2.5 模糊偏好關係(FPR) 41 2.5.1 一致性模糊偏好關係概念 41 2.5.2 建立一致性模糊偏好關係矩陣 43 2.6 人工智慧 44 2.6.1 支持向量機(SVM) 45 2.6.2 最小平方差支持向量機(LS-SVM) 47 2.6.3 演化式支持向量機推論模式(ESIM) 49 2.6.4 演化式最小平差支持向量機(ELSIM) 52 2.6.5 生物共生演算法最小平方差支持向量機(SOS-LSSVM) 54 第三章 快速間接量測方法 59 第四章 橋梁耐震臨界頻率比值推論模式 65 4.1 建置橋梁耐震有限元素模型 66 4.1.1 橋墩塑鉸分析 66 4.1.2 計算土壤與基礎結構互制之彈簧常數 68 4.2 橋梁耐震側推分析 70 4.2.1 耐震側推分析完成 70 4.2.2 輸出static Pushover Curve圖表 71 4.2.3 Pushover calculate PGA 73 4.3 定義橋梁耐震臨界頻率比值(Rec) 75 4.4 確立Rec影響因子 76 4.4.1 橋梁屬性資料彙整 77 4.4.2 第一階段因子篩選(問卷調查) 79 4.4.3 第二階段因子篩選(SPSS分析) 84 4.4.4 確認Rec影響因子 102 4.5 建立Rec推論模式 104 4.5.1 匯入橋梁耐震臨界頻率比值案例庫 104 4.5.2 參數設定 107 4.5.3 分組後進行交叉驗證 107 4.5.4 應用SOS-LSSVM預測輸出值 108 4.5.5 績效衡量 108 4.5.6 不同AI方法比較 112 第五章 橋梁耐洪臨界頻率比值推論模式 113 5.1 建置橋梁耐洪有限元素模型 114 5.1.1橋墩塑鉸分析 114 5.1.2計算土壤與基礎結構互制之彈簧常數 114 5.2 橋梁耐洪側推分析 115 5.2.1 容量之認定 115 5.2.2 需求之認定 116 5.3 定義橋梁耐震臨界頻率比值(Rsc) 120 5.4 確立Rsc影響因子 122 5.4.1 橋梁屬性資料彙整 122 5.4.2 第一階段因子篩選(問卷調查) 122 5.4.3 第二階段因子篩選(SPSS分析) 126 5.4.4 確認Rsc影響因子 133 5.5 建立Rsc推論模式 135 5.5.1 匯入橋梁耐洪臨界頻率比值案例庫 135 5.5.2 參數設定 138 5.5.3 分組後進行交叉驗證 138 5.5.4 應用SOS-LSSVM預測輸出值 138 5.5.5 績效衡量 138 5.5.6 不同模組比較 140 第六章 案例驗證與分析 141 6.1 蘭陽大橋實例驗證與分析 143 6.1.1 蒐集橋梁基本資料 143 6.1.2 橋梁耐洪臨界頻率比值推論模式 144 6.1.3 預測橋梁耐洪臨界頻率比值 144 6.1.4 間接量測現地橋梁臨界頻率比值 145 6.1.5 案例分析 146 第六章 結論與建議 147 6.1 結論 147 6.2 建議 149 參考文獻 150 <附錄A> 154 <附錄B> 156 <附錄C> 169 <附錄D> 176 <附錄E> 178 <附錄F> 185

    [1]陳永銘、許阿明,《臺灣與美國之橋梁檢測系統與制度》,臺灣公路工程,2008。
    [2]中國土木水利工程協會,《橋梁檢測基本理論》,中國土木水利工程協會,2013。
    [3]陳正興、李維峰與梅興泰,《振動量測於橋梁之識別分析》,第六屆公共工程非破壞檢測技術研討會,2009。
    [4]石峰,《應用現地微振量測進行斜張橋之沖刷評估》,國立雲林科技大學碩士論文,2011。
    [5]陳旻昱,《橋梁振動特性實驗研究》,國立臺灣大學碩士論文,2014。
    [6]Yang, Y.B. and Chang, K.C.(2009a),“Extracting the Bridge Frequencies Indirectly from a Passing Vehicle: Parametric Study,” Engineering Structures, 31(10): 2448-2459.
    [7]CSI,“SAP2000:Integrated Finite Element Analysis and Design of structures” ,Computers and Structures, Inc., Berkely, California,1996.
    [8]鄭明淵、歐昱辰、邱建國、廖國偉,《橋梁通阻檢測分析模式建立之研究》,交通運輸研究所,2011。
    [9]Min-Yuan Cheng, Doddy Prayogo, Yu-Wei Wu (in preparation). “Predicting the Pavement Rutting Behavior of Asphalt Mixtures Using Symbiotic Organisms Search - Least Squares Support Vector Machine Inference Model. ” Construction and Building Materials.
    [10]鄭明淵、廖國偉,《移動式橋梁振動檢測及訊號分析與傳輸通報系統》,交通運輸研究所,2013。
    [11]交通部公路總局,《公路橋梁耐震能力評估及補強工程可行性研究》,交通部公路總局,2009。
    [12]邱永芳、謝明志、林雅雯、曾文傑等人,《RC橋梁材料劣化評估與殘餘壽命預測技術手冊》,交通部運輸研究所,2011。
    [13]邱永芳、謝明志、林雅雯、張道光、薛強等人,《橋梁殘餘壽命與保全評估決策模式之研發(1/4) 》,交通部運輸研究所,2011。
    [14]陳正興、李維峰與梅興泰,《振動量測於橋梁之識別分析》,第六屆公共工程非破壞檢測技術研討會,2009。
    [15]張嘉峰、梅興泰,《以振動頻率檢測橋基沖刷》,營建知訊,2009。
    [16]陳建雲,《橋梁與土壤互制分析應用於橋梁沖刷之研究》,國立中央大學碩士論文,2011。
    [17]許澤善,《河床沖刷對曲線型橋梁3D動態行為之影響》,逢甲大學碩士論文,2005。
    [18]交通部公路總局,《公路橋梁耐震設計規範》,1995。
    [19]日本道路協會,《道路橋示方書-耐震設計篇》,2000。
    [20]鄧振源、曾國雄,《層級分析法(AHP)的內涵特性與應用(上、下) 》,中國統計學報,27卷6、7期,1990。
    [21]Herrera. Viedma E., Herrera. F., Chielana, F. & Luque, M.(2004)“Some issues on consistency of fuzzy preference relations,” European Journal of Operational Research, 154(1), 98-109.
    [22]Ko, C. H.(1999), “Computer aided decision support system for disaster prevention of hillside residents”, MS thesis, National Taiwan University of Science and Technology, Taipei, Taiwan.
    [23]Fukahori, K. and Kubota, Y. (2000),”Consistency evaluation of landscape design by a decision support system”, Computer-Aided Civil and Infrastructure Engineering, No.15(5), pp.342-354.
    [24]Sundin, S., and Braban-Ledoux, C. (2001), “Artificial intelligence-based decision support technologies in pavement management”, Computer-Aided Civil and Infrastructure Engineering, No.16(2), pp.143-157.
    [25]M.-Y. Cheng, Y.-W. Wu (2009), “Evolutionary support vector machine inference system for construction management”, Automation in Construction, No.18, pp. 597-604.
    [26]M.-Y. Cheng, P.M. Firdausi, D. Prayogo (2014), “High-performance concrete compressive strength prediction using Genetic Weighted Pyramid Operation Tree (GWPOT)”, Engineering Applications of Artificial Intelligence, No.29, pp.104-113.
    [27]M.-Y. Cheng, M.-T. Cao (2014), “Evolutionary multivariate adaptive regression splines for estimating shear strength in reinforced-concrete deep beams”, Engineering Applications of Artificial Intelligence, No.28, pp. 86-96.
    [28]M.-Y. Cheng, D.K. Wibowo, D. Prayogo, A.F.V. Roy (2015), “Predicting productivity loss caused by change orders using the evolutionary fuzzy support vector machine inference model”, Journal of Civil Engineering and Management, No.21, pp.881-892.
    [29]M.-Y. Cheng, N.-D. Hoang, Y.-W. Wu (2013), “Hybrid intelligence approach based on LS-SVM and Differential Evolution for construction cost index estimation: A Taiwan case study”, Automation in Construction, No.35, pp.306-313.
    [30]M.-Y. Cheng, A.F.V. Roy (2011), “Evolutionary fuzzy decision model for cash flow prediction using time-dependent support vector machines”, International Journal of Project Management, No.29, pp.56-65.
    [31]D. Prayogo (2012), “A Novel Genetic Algorithm-Based Evolutionary Support Vector Machine for Optimizing High-Performance Concrete”, MS thesis, Department of Construction Engineering, National Taiwan University of Science and Technology, Taipei, Taiwan.
    [32]M.-Y. Cheng, D. Prayogo, Y.-W. Wu (2013), “Novel Genetic Algorithm-Based Evolutionary Support Vector Machine for Optimizing High-Performance Concrete Mixture”, Journal of Computing in Civil Engineering, 06014003.
    [33]楊智民、劉廣利,《不確定性支持向量機原理及應用》,科學出版社,中國,2006。
    [34]Min-Yuan Cheng, Nhat-Duc Hoang (2012), “Evolutionary Least Squares Support Vector Machine – Userguide, Technical Report”, CIC Lab, National Taiwan University of Science and Technology, Taipei, Taiwan.
    [35]許淑婷,《利用快速混雜基因演算法與模擬機制建立設計專案作業程序最佳化之研究》,碩士論文,國立成功大學,2006。
    [36]吳育偉、鄭明淵,《支持向量機最佳化模式-應用於營建管理決策》,第11屆營建工程與管理學術研討會,2007。
    [37]Storn, R. and K. Storn, and J.A. Lampinen (2005), “Differential Evolution A Practical Approach to Global Optimization”. Springer-Verlag.
    [38]Nhat-Duc Hoang (2012).“Decision Support System for Construction Management Based on Evolutionary Least Squares Support Vector Machine”, MS thesis, National Taiwan University of Science and Technology, Taipei, Taiwan
    [39]M.-Y. Cheng, D. Prayogo (2014), “Symbiotic Organisms Search: A new metaheuristic optimization algorithm”, Computers & Structures, No.139, pp.98-112.
    [40]D. Prayogo(2015), “An Innovative Parameter-Free Symbiotic Organisms Search (SOS) for Solving Construction-Engineering Problems”, MS thesis, Department of Construction Engineering, National Taiwan University of Science and Technology, Taiwan
    [41]Tien-Chin Wang. Tsung-Han Chang. (2007) “Forecasting the probability of successful knowledge management by consistent fuzzy preference relations”, Expert Systems with Applications 32.
    [42]Yeh, I. C., Lien, C. H., Peng, C. H., & Lien, L. C. (2010), “Modeling Concrete Strength Using Genetic Operation Trees”, International Conference on Machine Learning and Cybernetics, Qingdao: IEEE.
    [43]C.D. Lewis(1982), “Industrial and Business Forecasting Method”, London: Butterworth-Heinemann.
    [44]陳振川、蔡益超、張國鎮,《橋梁監測預警系統及沖刷保護措施及補強等策略之研究》,交通部公路總局,2006。

    QR CODE