簡易檢索 / 詳目顯示

研究生: 傅學齡
Syue-ling Fu
論文名稱: 利用反射係數之特徵向量做真假人臉辨識
Discrimination Between Real and Synthetic Human Faces Using Feature Vector of Reflectance Function
指導教授: 胡能忠
Neng-Chung Hu
口試委員: 黃忠偉
Allen J. Whang
蘇忠傑
Jung-Chieh Su
學位類別: 碩士
Master
系所名稱: 電資學院 - 光電工程研究所
Graduate Institute of Electro-Optical Engineering
論文出版年: 2008
畢業學年度: 96
語文別: 中文
論文頁數: 82
中文關鍵詞: 反射係數特徵向量真假人臉辨識色票
外文關鍵詞: reflectance function
相關次數: 點閱:505下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 一般在做的真假臉辨識過程中,常需用到昂貴的儀器(如光譜儀)來做測量以及在測量之後需要較長的資訊演算時間,而基於此缺點,本文提出一量測時不需用到昂貴儀器且演算快速的真假人臉辨識方法。在光源不知的條件下,儀器上,只要以一台CCD感測器加上四個特定波段分別為530nm,568nm,610nm,和690nm的濾波片,測量其讀值,便可以求得分辨之特徵向量[1]-[5];在演算方面分為兩個階段,第一階段利用皮膚色色票來預測其真人臉位置,而在第二階段為了克服環境光源所造成的誤差,我們加入白色色票的資訊,利用真人臉和皮膚色色票之間的頻譜為辨識基礎,重新修正色票預測真人臉的位置,提升了在分辨真假人臉時的效率。


    In the processing of discrimination between real and synthetic human faces, generally, we utilize expensive instrument to do measurement and take a long time to perform mathematical calculations on date measured. Accordingly, we propose an algorithm of discrimination between real and synthetic human faces which reduces the processing time and need not an expensive instrument to do measurement. On the condition of light source unknown, we can obtain a 2-D feature vector constructed by the difference of the response values of four filters with 530nm, 568nm, 610nm, and 690nm on a CCD.[1][2][3][4][5] After that we will regard a 2-D feature vector as input date of processing stream. There are two steps in the processing stream of discrimination. Firstly, we use the skin color of colorchecker to estimate the location of real faces. As a result, for overcoming the error margin that the environment light source causes, we join the information of white colorchecker and make use of the frequency chart of of real human face and the skin color colorchecker in order to recognize foundation, re- revise the color ticket position that predicts true person's face, promoted while distinguishing true or false person's face of efficiency.

    第一章 導論 1 1.1 人臉辨識簡介 1 1.2 研究動機及研究內容 1 第二章 基礎理論 3 2.1 光線與顏色 3 2.2 標準色度學系統 6 2.3 均等色度空間[9] 20 2.3 反射係數介紹 25 第三章 真人臉之特徵向量 27 3.1 真假人臉辨識演算法流程圖 27 3.2 真假人的反射係數 28 3.3 理論模擬和探討 31 3.3.1 建立一個真實人臉之機率密度函數(probability density function) 35 3.3.2 結果討論 36 第四章 真假人臉辨識 38 4.1 使用儀器之介紹與校正 38 色票(white) 40 4.2 實驗環境與方法 41 4.2.1實驗環境 41 4.2.2 實驗方法與步驟 44 4.2.3 真人臉之讀值分析 45 4.3 不同光源下真人臉資料庫建立 46 4.3.1不同光源之比較 46 4.3.3不同光源之計算結果 48 4.3.3討論 51 4.4 真人臉聚集位置預測 51 4.4.1 真人臉與色票比較 51 4.4.2 真人臉位置預測修正 56 4.5 真人臉範圍預測 60 4.5.1 A光源之分析 60 4.5.2 不同光源之討論 61 4.5.3結果討論 63 4.6不同角度辦別真人臉 64 4.6.1不同光源下之實驗結果 65 4.6.2結果討論 67 第五章 結論與未來發展 68 5.1 結論 68 5.2 未來發展 69 參考文獻 70

    [1] Elli Angelopoulou, Kostas Daniilidis and Rana Molana, "Multispectral Skin Color Modeling," Technical Report MS-CIS-01-22 June 22, 2001
    [2]C. van Trigt, "Smoothest reflectance functions. II. Complete results," J. Opt.
    Soc. Am. A 7, 2208-2222 (1990).
    [3]C. van Trigt, ‘‘Color video system with Illuminant independent properties,’’
    international patent application PCT/NL94/00049 (February 28, 1994).
    [4]C. van Trigt, ‘‘Estimating reflectance: how to discount the illuminant,’’ Die
    Farbe 40, 9–24 (1994).
    [5]C. van Trigt, ‘‘Metameric blacks and estimating reflectance,’’J. Opt. Soc. Am.
    A 11, 1003–1024 (1994).
    [6]Nathan Moroney , Mark D. Fairchild , Robert W.G..Hunt, Changjun Li , M. Ronnier Luo and Todd Newman,”The CIECAM02 Color Appearance Model”.
    [7]R. Missaoui, M. Sarifuddin and J. Vaillancourt, “Similarity measures for efficient content-based image retrieval, ”IEE Proc.-Vis. Image Signal Process., Vol. 152, No. 6, December 2005.
    [8]L. Lucchese and S.K.Mitra,”Color segmentation based on separate anisotropic diffusion of chromatic and achromatic channels,” IEE Proc.-Vis. Image Signal Process., Vol. 148, No. 3, June 2001.
    [9] 陳鴻興、陳君彥譯, 基礎色彩再現工程, 第2-16~2-21頁, 全華科技圖書股份有限公司, 民國九十二年。
    [10]Menahem Friedman and Abraham Kandel, “Introduction to pattern recognition“pp. 118-124
    [11]Wyszecki and Stiles, ”Color Science”pp.55-56 and 155
    [12]Hhien-Che Lee” Introduction to color imaging science”pp183
    [13] Rui Huang, Vladimir Pavlovic, and Dimitris N. Metaxas” A Hybrid Face
    Recognition Method using Markov Random Fields” 0-7695-2128-2/04 (C) 2004
    IEEE
    [14]P. Belhumeur, J. Hespanha, andD.Kriegman.Eigenfacesvs.fisherfaces:Recognition
    using class specific linear projection.IEEE T-PAMI, 19(7), 1997
    [15] Neng-Chung Huand Cheng-Yeu Huang” Face Recognition of Real Human and
    Artificial Human”
    [16]E. Marezalec, B. Martinkauppi, M. Soriano, and M. Pietihaninen “Physice-based
    face database for color research” J. of Electionic Imaging. Vol.9, pp.32-38, Jan.
    2000.
    [17]Z. Pan, G. Healey, M. Prased, B. Tromberg, “Illumination-invariant face
    recognition in hyperspectral image”, Proc. of SPIE vol.5093, pp275-282, 2003.
    [18]C. Y. Huang and N. C. Hu, “Face recognition of real human and synthetic hum”,
    Optical Engineering, vol.45, pp. June, 2006.

    無法下載圖示 全文公開日期 2013/07/10 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)
    全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
    QR CODE