簡易檢索 / 詳目顯示

研究生: 施筆生
Bi-Sheng Shih
論文名稱: 氮化鎵壓控振盪器及除二注入鎖定除頻器之研究
GaN Voltage-controlled Oscillator and Divide-by 2 Injection-Locked Frequency Divider
指導教授: 張勝良
Sheng-Lyang Jang
口試委員: 張勝良
Sheng-Lyang Jang
溫俊瑜
Jiun-Yu Wen
徐敬文
Ching-Wen Hsue
賴文政
Wen-Cheng Lai
學位類別: 碩士
Master
系所名稱: 電資學院 - 電子工程系
Department of Electronic and Computer Engineering
論文出版年: 2018
畢業學年度: 106
語文別: 中文
論文頁數: 230
中文關鍵詞: 震盪器氮化鎵除頻器相位雜訊
外文關鍵詞: VCO, GaN, Divider, Phase Noise
相關次數: 點閱:248下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 首先,第一部分我們研究一個有寬頻帶的除二注入鎖定除頻器,主要的注入功率為-20dBm到10dBm。此除頻器由兩個子除頻器組成。其中一個除頻器使用雙諧振電阻分佈式諧振器, 第二個除頻使用單諧振LC諧振器。兩個子除頻器中的電感做成一個互感使其相互感應耦合,使此除頻器三重共振且有三個頻帶且三個頻帶的中心頻率在3.8 GHz, 3.4 GHz 及2.6 GHz附近,我們可以通過調整變容器的容值來切換任意你想要的頻帶。在較低的注入功率時,我們可以同時看到有三個頻帶同時共振。而在注入功率為0dBm時,我們可以發現,高頻帶和低頻帶的除頻範圍會有重疊的部份。
    接著,第二部份我們研究一個由互感組成的除二注入鎖定除頻器,此除頻器實現於台積電0.18微米製程,而此除頻器是由一個單共振除頻器及一個雙共振除頻器所組成,經由互感互相耦合,共享共同的磁場,且此除頻器有三個不同的頻帶。
    當我們對電源施以一個高壓,這會對電路產生高的交流和直流應力,進而使此鎖定除頻器的除頻震盪頻率產生偏移,而這些偏移會隨著施以應力時間而跟著改變。
    第三部份我們研究一個穩懋氮化鎵 0.25微米製程的振盪器並具有二倍頻輸出。振盪器由兩個具有交叉耦合反饋的GaN HEMT放大器組成,輸出從兩個放大器的公共節點分接。當供應電壓為0.9V時,可以測得輸出電流及功率消耗分別為87mA和78.3m. 此振盪器可以產生8.7 GHz的單端信號,並提供-7.49dBm的輸出功率。相位雜訊在1MHz offset為-122.191dBc/Hz。晶片面積為 2×1 〖mm〗^2。
    第四部份我們探討一個使用尾注入法的除二注入鎖定除頻器,此除頻器實現於穩懋氮化鎵 0.25微米製程。此除頻器由電容交叉耦合的一組GaN HEMT及LC共振腔所組成。此除頻器的自由震盪頻率大約為3.28GHz。當提供給除頻器的電壓為0.7V時,鎖定頻率範圍從6.47 GHz到6.66 Hz, 且輸出功率為-2.94dBm。這個使用尾注入法的除頻器的晶片面積為2×1 〖mm〗^2。

    第五部份,我們將研究一個實現於穩懋氮化鎵 0.25微米製程並具有低相位雜訊的特性且振盪頻率在9.2GHz的振盪器。此振盪器使用具有串聯LC電路的GaN HEMT 放大器做為反饋電路。當供應電壓在0.85V時,此振盪器的消耗功率為4.335mW。單端振盪器產生一個9.23GHz的信號並帶有-3.18 dBm的輸出功率。相位雜訊在1MHz offset 為-128.08 dBc/Hz 且FoM 為-200.998 dBc/Hz。此振盪器所佔的晶片面積為2×1 〖mm〗^2
    最後我們將討論振盪頻率為8.22GHz 且具有低相位雜訊的一個氮化鎵壓控振盪器,此振盪器實現於穩懋氮化鎵 0.25微米製程。此振盪器使用一個HEMT放大器及互感回授,其中互感使用了一個三路徑的次要電感及一個單路徑的主要電感。此氮化鎵壓控振盪器的功率銷號為4.328mW,並提供一個輸出功率為-11.35dBm且振盪在8.22 GHz的信號。相位雜訊在1MHz offset 為-120.82 dBc/Hz 且FoM 為-192.76 dBc/Hz. 此振盪器所佔的晶片面積為2×1 〖mm〗^2


    First, a high-performance wide locking range divide-by-2 injection-locked frequency divider (ILFD) in the 0.18 μm CMOS process is presented.The ILFD consists of two sub-ILFDs. The first sub-ILFD uses a dual-resonance resistively distributed resonator, and the 2nd ILFD uses a single-resonance LC resonator. The two sub-ILFDs use two transformers to inductively couple each other so that the ILFD becomes a triple-resonance ILFD having three frequency bands around 3.8 GHz, 3.4 GHz and 2.6 GHz by tuning the varactor capacitance. At low injection power, the ILFD has three locking ranges associated with the oscillation frequency bands. At injection power of 0 dBm, overlapped locking range associated with high-band and low-band resonant frequencies are found.
    Secondly, a transformer-based divide-by-2 injection-locked frequency divider (ILFD) is presented. The ILFD is a combination of a single-resonance ILFD and a dual-resonance ILFD by sharing a common magnetic field and was implemented in the TSMC 0.18 μm BiCMOS process and it has three fresh frequency bands. High-voltage was applied to the supply, this generate high ac and dc stress to the circuit, and the shrinkage of locking range and the drift of free-running ILFD oscillation frequency with stress time were found.

    Thirdly, a push-push GaN HEMT oscillator is presented, The proposed oscillators have been implemented with the WIN 0.25 μm GaN HEMT technology. The oscillator consists of two HEMT amplifiers with cross-coupled feedback, the output is tapped from the common node of two amplifiers. With the supply voltage of VDD = 0.9 V, the GaN VCO current and power consumption of the oscillator are 87 mA and 78.3mW, respectively. The oscillator can generate single-ended signal at 8.7 GHz and it also supplies output power -7.49 dBm. At 1MHz frequency offset from the carrier the phase noise is -122.191 dBc/Hz. The die area of the GaN HEMT oscillator is 2×1 〖mm〗^2.
    Fourthly, a GaN HEMT divide-by-2 injection-locked frequency divider (ILFD) with the tail injection method is presented. The proposed ILFD has been implemented with the WIN 0.25 μm GaN HEMT technology. The ILFD consists of a capacitive cross-coupled HEMT pair and an LC-tank. The free-running oscillation of the ILFD is around 3.28 GHz. At the ILFD-core supply 0.7 V, the locking range is 0.19 GHz from 6.47 GHz to 6.66 GHz, the output power from the ILFD core is -2.94 dBm. The die area of the tail-injection GaN HEMT ILFD is 2×1 〖mm〗^2.
    Fifthly, a low-phase noise 8.22 GHz GaN HEMT oscillator in the WIN 0.25 μm GaN HEMT process is presented. The oscillator uses a HEMT amplifier with a transformer as the feedback network. The transformer uses a 3-path secondary and a single-path primary. The GaN oscillator consumes the power 4.328 mW and generates a signal at 8.22 GHz with an output power -11.35 dBm. At 1MHz frequency offset from the carrier at 8.22 GHz the phase noise is -120.82 dBc/Hz, the FoM of the proposed oscillator is -192.76 dBc/Hz. The oscillator chip occupies an area of 2×1 〖mm〗^2.
    Finally, a low-phase noise 9.2 GHz GaN HEMT oscillator in the WIN 0.25 μm GaN HEMT process. The oscillator uses a HEMT amplifier with a series LC circuit as the feedback network. With the supply voltage of VDD = 0.85 V, the GaN oscillator consumes the power 4.335 mW. The single-ended oscillator generates a signal at 9.23 GHz with an output power -3.18 dBm. At 1MHz frequency offset from the carrier at 9.23 GHz the phase noise is -128.08 dBc/Hz, the FoM of the proposed oscillator is -200.998 dBc/Hz. The chip occupied area of the GaN oscillator is 2×1 〖mm〗^2.

    摘要…………………………………………………………………………………….I Abstract……………………………………………………………………………....IV 致謝…………………………………………………………………………………VII Table of Contents VIII List of Figures ……………………………………………………………………...XIII List of Tables…………………………………………………………………...XXVIII Chapter 1 Introduction 1 1.1 Background 1 Chapter 2 Overview of the Voltage-Controlled Oscillators 5 2.1 Introduction 5 2.2 Theory of Oscillators 7 2.2.1 Positive Feedback (Two-Port) Oscillators 8 2.2.2 Negative Resistance (One-Port) Oscillators 11 2.3 The Classification of Oscillators 14 2.3.1 Ring Oscillator 14 2.3.2 LC-Tank Oscillator 17 2.3.3 Research of RLC Tank 21 2.3.4 Type of LC Oscillator 25 2.4 Design Parameter of Voltage-Controlled Oscillator 34 2.5 Significant Issue of Voltage-Controlled Oscillator 38 2.5.1 Phase Noise 38 2.5.2 The LTI (Linear Time-Invariant) Phase Noise Model 40 2.5.3 The LTV (Linear Time-Variant) Phase Noise Model 45 2.5.4 Quality Factor 49 2.5.5 Figure of Merit [dBc/Hz] 50 2.6 Elements of Semiconductor Process 51 2.6.1 Resistor 51 2.6.2 Inductor 53 2.6.3 Capacitor 63 2.6.4 Varactor 65 Chapter 3 Design of Injection Locked Frequency Divider 72 3.1 The Dividers 73 3.2 Operation Principle 75 3.3 Injection Locking 77 3.4 Noise in ILOs 78 3.5 Locking Range 81 3.6 Example for a single injection of ILFD 84 Chapter 4 Divide-by-2 Injection-Locked Frequency Divider Using Hybrid Triple-Resonance Resonator 86 4.1 Introduction 86 4.2 Circuit Design 89 4.2.1. Operation of triple-resonance ILFD 89 4.2.2. Locking Range of triple-resonance ILFD 93 4.3 Measurement Results and Discussion 94 Chapter 5 Hot-Carrier Stressed Transformer-Coupled Triple-Resonance Injection-Locked Frequency Divider 106 5.1 Introduction 106 5.2 Circuit Design 108 5.3 Measurement Results and Discussion 110 Chapter 6 A Push-Push GaN HEMT Cross-Coupled Oscillator 122 6.1 Introduction 122 6.2 Circuit Design 124 6.3 Measurement Results and Discussion 126 Chapter 7 A GaN HEMT Tail-injection Injection-Locked Cross-Coupled Frequency Divider………………………………………………...……………….131 7.1 Introduction 131 7.2 Circuit Design 133 7.3 Measurement Results and Discussion 134 Chapter 8 A Low-Phase Noise 9.2 GHz GaN HEMT Oscillator 142 8.1 Introduction 142 8.2 Circuit Design 144 8.3 Measurement Results and Discussion 147 Chapter 9 High-Voltage Bias Aging of a Low-Phase Noise GaN HEMT Oscillator……………………… 152 9.1 Introduction 152 9.2 Circuit Design 154 9.3 Measurement Results and Discussion 155 Chapter 10 A Low-Phase Noise 8.35 GHz GaN HEMT Oscillator Using Feedback Multi-Path Transformer 163 10.1 Introduction 163 10.2 Circuit Design 165 10.3 Measurement Results and Discussion 168 Chapter 11 Hot-Carrier Stressed Transformer-Feedback GaN HEMT Oscillator 174 11.1 Introduction 174 11.2 Circuit Design 176 11.3 Measurement Results and Discussion 177 Chapter 12 Conclusions 183 References……………………………………………………………………..……187

    [1] B. Razavi, RF Microelectronics, Prentice Hall PTR, 1998.
    [2] S. Smith, “Microelectronic Circuit 4th edition,” Oxford University Press 1998.
    [3] J. Roggers, C. Plett, “Radio frequency integrated circuit design,” Artech House, 2003.
    [4] N. M. Nguyen and R. G. Meyer, “Start-up and frequency stability in high-frequency oscillators,” IEEE J. Solid-State Circuit, vol. 27, no. 5, pp. 810-820, May 1992.
    [5] B. Razavi, “Design of Integrated Circuits for Optical Communications,” Mc Graw Hill.
    [6] B. Razavi, “Design of analog CMOS integrated circuits, ” Mc Graw Hill, 2001.
    [7] S. J. Lee, B. Kim, K. Lee, “A novel high-speed ring oscillator for multiphase clock generation using negative skewed delay scheme,” IEEE Journal of Solid-State Circuits, vol. 32, No. 2, February 1997.
    [8] G. Gonzalez, “Microwave Transistor Amplifiers Analysis and Design”, Prentice Hall, 1997.
    [9] S. H. Lee, S. L. Jang, “Implementation of New High Frequency CMOS VCOs and Injection-Locked Frequency Dividers,” April 2007.
    [10] J. Aguilera, and R. Berenguer, “Design and test of integrated inductors for RF applications,” Kluwer Academic Publishers, 2004.
    [11] A. Hajimiri and T. Lee, “A general theory of phase noise in electrical oscillators,” IEEE J. Solid-State Circuits, vol. 33, no. 2, pp. 179–194, Feb. 1998.
    [12] B. De Muer, M. Borremans, M. Steyaert, and G. Li. Puma, “A 2GHz low-phase-noise integrated LC-VCO set with flicker-noise upconversion minimization,” IEEE J. Solid-State Circuits, vol. 35, pp. 1034-1038, 2000.
    [13] S. Levantino, C. Samori, A. Bonfanti, S.L.J. Gierkink, A.L. Lacaita, and V. Boccuzzi, “frequency dependence on bias current in 5 GHz CMOS VCOs: impact on tuning range and flicker noise up-conversion,” IEEE J. Solid-State Circuits, vol. 37, pp. 1003-1001, 2002.
    [14] T. H. Lee, The Design of CMOS Radio Frequency Integrated Circuits, Cambridge University Press 1998.
    [15] J. Craninckx and M. S. J. Steyaert, “A 1.8 GHz low-phase-noise CMOS VCO using optimized hollow spiral inductors,” IEEE J. Solid-State Circuits, vol. 32, no. 5, pp. 736–744, May 1997.
    [16] J. J. Kim, B. Kim, “A low-phase-noise CMOS LC oscillators with a ring structure,” ISSCC Digest of Technical Papers, pp. 430-431, Feb. 2000.
    [17] J. Savoj, B. Razavi, “High-Speed CMOS Circuits for Optical Receivers, “Kluwer Academic Publishers, 2001.
    [18] A. Rofougaran, J. Rael, M. Rofougaran, and A. Abidi, “A 900 MHz CMOS LC-oscillator with quadrature outputs,” in IEEE ISSCC Dig. Tech. Papers, pp. 392-393, Feb. 1996.
    [19] T. Lee, and A. Hajimiri, “Oscillator phase noise: a tutorial,” IEEE J. Solid-State Circuits, vol. 35, no. 3, pp. 326-336, Mar. 2000.
    [20] D. Leeson, “A simple model of feedback oscillator noise spectrum,” Proceedings of the IEEE, vol. 54, pp. 329–330, Feb. 1966.
    [21] Kenichi Okada and Kazuya Masu, “Modeling of spiral inductors,” Advanced Microwave Circuits and System, Vitaliy Zhurbenko (Ed.), InTech, 2010.
    [22] A. Hajimiri and T. H. Lee, The Design of Low Noise Oscillators, Springer 1999.
    [23] C. P. Yue, C. Ryu, Jack Lau, T. H. Lee, and S. Wong, “A physical model for planar spiral inductors on silicon,” 1996 International Electron Devices Meeting Technical Digest, pp. 155–158, Dec. 1996.
    [24] A. Hajimiri, and T. H. Lee, “Design issues in CMOS differential LC oscillators,” IEEE J. Solid-State Circuits, vol. 34, no. 5, pp. 717–724, May 1999.
    [25] A. Zolfaghari, A. Chan, and B. Razavi, “Stacked inductors and transformers in CMOS technology,” IEEE J. Solid-State Circuits, vol. 36, no. 4, pp. 620-628, April 2001.
    [26] H. D. Wohlmuth and D. Kehrer, “A high sensitivity static 2:1 frequency divider up to 27 GHz in 120 nm CMOS,” IEEE European Solid State Circuits Conference (ESSCIRC), pp. 823-826, Sept. 2002.
    [27] M. Tiebout, “A 480 uW 2 GHz ultra-low power dual-modulus prescaler in 0.25 um standard CMOS,” IEEE International Symposium on Circuit and System (ISCAS), vol. 5, pp. 741-744, May 2000.
    [28] H. Wu, and A. Hajimiri, “A 19 GHz 0.5 mW 0.35 μm CMOS frequency divider with shunt-peaking locking-range enhancement,” IEEE ISSCC Dig. Tech. Papers, pp. 412-413, Feb. 2001.
    [29] R. J. Betancourt-Zamora, S. Verma, and T. H. Lee, “1 GHz and 2.8 GHz CMOS injection- locked ring oscillator prescalers,” IEEE Symposium on VLSI Circuits, pp. 47-50, June 2001
    [30] H. R. Rategh, and T.H. Lee, “Super-harmonic injection-locked frequency dividers,” IEEE J. Solid-State Circuits, vol. 34, pp. 813-821, June 1999.
    [31] W. Z. Chen, and C. L. Kuo, “18 GHz and 7 GHz super-harmonic injection-locked dividers in 0.25pm CMOS technology,” IEEE European Solid State Circuits Conference (ESSCIRC), pp. 89-92, Sept. 2002.
    [32] H. Wu and L. Zhang, “A 16-to-18GHz 0.18μm epi-CMOS divide-by-3injection-locked frequency divider,” in IEEE ISSCC Dig. Tech. Papers, Feb. 2006, pp.27–29.
    [33] C.-W. Chang, S.-L. Jang, C.-W. Huang, and C.-C. Shin, “Dual resonance LC-tank frequency divider implemented with switched varactor bias,” in Proc. IEEE Int. Symp. VLSI Design, Autom. Test, Apr. 2011, pp. 1–4.
    [34] S.-L. Jang, R.-K. Yang, C.-W. Chang, M.-H. Juang, and C.-C. Liu, ” Dual-band transformer-coupled quadrature injection-locked frequency dividers,” Microw. Opt. Technol. Lett., pp.1561-1564, July, 2011.
    [35] S.-L. Jang, C.-W. Chang, J.-Y. Wun, and M.-H. Juang, ” Quadrature injection-locked frequency dividers using dual-resonance resonator,” IEEE Microw. Wireless Compon. Lett., vol. 21, no. 1, pp. 37-39, Jan. 2011.
    [36] S.-L. Jang, X.-Y. Hang, and W.–T. Liu, ”Review: capacitive cross-coupled injection-locked frequency dividers,”Analog Integr Circ Sig Process, 88:97–104, 2016.
    [37] N. Mahalingam, K. Ma, K. S. Yeo, and W. M. Lim, “Coupled dual LC tanks based ILFD with low injection power and compact size,” IEEE Microw. Wireless Compon. Lett., vol. 24, no. 2, pp. 105–107, Feb. 2014.
    [38] S.-L. Jang, F.-H. Chen, and J.-F. Huang, ” A transformer-coupled LC-tank injection locked frequency divider,” Microw. Opt. Technol. Lett. Vol. 50, no. 3, pp.592-595, Mar. 2008.
    [39] Y. Chao, and H.C. Luong, “Analysis and design of wide-band millimeter-wave transformer-based VCO and ILFDs,” IEEE Trans. Circuits Syst. I, Reg. Papers, vol. 63, no. 9, pp. 1416-1425, Sep. 2016.
    [40] S.-L. Jang, C.-C. Liu and C.-W. Tai, ” Implementation of 6-port 3D transformer in injection-locked frequency divider,” IEEE Int. VLSI- DAT, 2009.
    [41] J. Zhang, H. Liu, Y. Wu, C. Zhao, K. Kang, " Analysis and design of ultra-wideband mm-wave injection-locked frequency dividers using transformer-based high-order resonators,” IEEE J. Solid-State Circuits, 2018.
    [42] S.-L. Jang, Z.-H. Wu, C.-W. Hsue and H.-F. Teng,” Wide-locking range dual-band injection-locked frequency divider,” Microw. Opt. Technol. Lett. vol. 55, 10, pp. 2333–2337, Oct. 2013
    [43] S.-L. Jang, Y.-J. Chen, C.-H. Fang and W. C. Lai, ” Enhanced locking range technique for frequency divider using dual-resonance RLC resonator,” Electron. Lett., vol. 51, 23, pp.1888-1889, 2015.
    [44] Y.-H. Lin, and H. Wang, “Design and analysis of W-band injection-locked frequency divider using split transformer-coupled oscillator technique,” IEEE Trans. Microw. Theory Techn., vol. 66, no. 1, pp. 177–186, Mar. 2018.
    [45] S.-L. Jang, W.-C. Cheng and C.-W. Hsue, ” Triple-resonance RLC-tank divide-by-2 injection-Locked frequency divider,” Electron. Lett., vol. 52 No. 8 pp. 624–626, 2016.
    [46] S.-L. Jang, W.-C. Cheng and C.-W. Hsue, "Wide-locking range divide-by-3 Iniection-locked frequency divider using 6th-order RLC resonator," IEEE Trans. VLSI Syst., vol. 24, no. 7, pp.2598-2602, 2016.
    [47] S.-L. Jang, L.-T. Chou, J.-F. Huang, and C.-W. Chang, ” A dual-band dual-resonance quadrature injection-locked frequency divider,” IEICE Trans. Electron., Vol.E94-C,No.8,pp.1336-1339, Aug. 2011.
    [48] S.-L. Jang, C.-C. Shih, C.-C. Liu, and M.-H. Juang, ” CMOS injection-locked frequency divider with two series-LC resonators,” Microw. Opt. Technol. Lett., pp.290-293, Feb., 2011.
    [49] Y.-H. Chuang, S.-H. Lee, R.-H. Yen, S.-L. Jang, J.-F. Lee and M.-H. Juang, “A wide locking range and low voltage CMOS direct injection-locked frequency divider,” IEEE Microw. Wireless Compon. Lett., vol. 16, no. 5, pp. 299-301, May 2006.
    [50] S.-L. Jang, S.-S. Huang, J.-F. Lee and M.-H. Juang,” LC-tank Colpitts injection-locked frequency divider with record locking range,” IEEE Microw. Wireless Compon. Lett., pp.560-562, Aug. 2008.
    [51] S.-L. Jang , R.-K. Yang , C.-W. Chang and M.-H. Juang, "Multi-modulus LC injection-locked frequency dividers using single-ended injection", IEEE Microw. Wireless Compon. Lett.., vol. 19, pp. 311-313, 2009.
    [52] S.-L. Jang, L.-Y. Huang, C.-W. Hsue, and J.-F. Huang," Injection-locked frequency divider using injection mixer DC-biased in sub-threshold," IEEE Microw. Wireless Compon. Lett., vol. 25, no. 3, pp. 193-195, March 2015.
    [53] C. Hu, S. C. Tam, F.-C. Hsu, P.-K. Ko, T.-Y. Chan, and K. W. Terrill, “Hot-electron-induced MOSFET degradation—Model, monitor, and improvement,” IEEE J. Solid-State Circuits, vol. SSC-20, no. 1, pp. 295–305, Feb. 1985.
    [54] B. Doyle, M. Bourcerie, J. Marchetaux, and A. Boudou, “Interface state creation and charge trapping in the medium-to-high gate voltage range (VD/2 ≤ VG ≤ 5 VD) during hot-carrier stressing of n-MOS transistors,” IEEE Trans. Electron Devices, vol. 37, no. 3, pp. 744-754, Mar. 1990.
    [55] S.-S. Liu, S.-L. Jang, and C.-G. Chyau, " Compact LDD nMOSFET degradation model," IEEE Trans. Electron Devices, Vol. 45, No. 7, pp.1538-1547, 1998.
    [56] S.-L. Jang, J.-S. Yuan, S.-D. Yen, H.-S. Tang, S.-Y. Chen, G.-W. Huang , “Experimental evaluation of hot electron reliability on differential Clapp-VCO”, Microelectronics Reliability, pp. 254–258, Feb. 2013.
    [57] C.-H. Ho, K. A. Jenkins, H. Ainspan, E. Ray, B. P. Linder, and P. Song, “Performance degradation analysis and hot-carrier injection impact on the lifetime prediction of LC voltage control oscillator,” IEEE Trans. Electron Devices, vol. 62, no. 7, pp. 2148–2154, Jul. 2015.
    [58] Y. Shen, J. Lee, and H. Shin, “Hot carrier stress effect on the performance of 65 nm CMOS low noise amplifier,” in IEEE ICICDT, Austin, TX, May 2009, pp. 249–252
    [59] T. Quémerais, L. Moquillon, V. Huard, J.-M. Fournier, P. Benech, N. Corrao, and X. Mescot, “Hot-carrier stress effect on a CMOS 65-nm 60-GHz one-stage power amplifier,” IEEE Electron Device Lett., vol. 31, no. 9, pp. 927–929, Sep. 2010.
    [60] J. T. Park, B.-J. Lee, D.-W. Kim, C.-G. Yu, and H.-K. Yu, “RF performance degradation in nMOS transistors due to hot carrier effects,” IEEE Trans. Electron Devices, vol. 47, no. 5, pp. 1068–1072, May 2000.
    [61] S.-L. Jang, J.-F. Huang, C.-C. Fu and M.-H. Juang, ” Experimental evaluation of hot-carrier stressed series-tuned injection-locked frequency divider,”Analog Integr Circ Sig Process., 80, pp.133-139, 2014.
    [62] J.-F. Huang, S.-L. Jang, W.-C. Liu, and M.-H. Juang, ” Over-voltage stressed dual-resonance injection-locked frequency divider with series-peaking injection device,”Analog Integr Circ Sig Process., 81, pp.789-795, 2014.
    [63] S.-L. Jang and T.-C. Fu, " Effects of hot-carrier stress on the RF performance of a 0.18μm MOS divide-by-4 LC injection-locked frequency divider,"Fluct. Noise Lett. 13, No. 2, 1450009, 2014.
    [64] C. Dai, S.V. Walstra, S.-W. Lee, “The effect of instrinc capacitance degradation on circuit performance,” Symp. VLSI Technology, 1996, 196-197.
    [65] C. H. Ling, D. S. Ang, and S. E. Tan, “Effects of measurement frequency and temperature anneal on differential gate capactitance spectra observed in hot carrier stressed MOSFETs,” IEEE Electron Devices, pp. 1528-1535, 1995.
    [66] X. Lan, M. Wojtowicz, I. Smorchkova, R. Coffie, R. Tsai, B. Heying, M. Truong, F. Fong, M. Kintis, C. Namba, A. Oki, and T. Wong, “A Q-band low phase noise monolithic AlGaN/GaN HEMT VCO,” IEEE Microw. Wireless Compon. Lett., Vol. 16, No. 7, pp. 425-427, Jul. 2006.
    [67] V. S. Kaper, V. Tilak, H. Kim, A. V. Vertiatchikh, R. M. Thompson, T. R. Prunty, L. F. Eastman and J. R. Shealy, “High-power monolithic AlGaN/GaN HEMT oscillator,” IEEE J. Solid-State Circuits, vol. 38, no. 9, pp. 1457-1461, Sept. 2003
    [68] H. Liu, X. Zhu, C. C. Boon, X. Yi, M. Mao, and W. Yang, “Design of ultra-Low phase noise and high power integrated oscillator in 0.25 µm GaN-on-SiC HEMT technology,” IEEE Microw. Wireless Compon. Lett., vol. 24, pp. 120–122, 2014.
    [69] Z. Q. Cheng, Y. Cai, J. Liu, Y. Zhou, K. M. Lau, and K. J. Chen, “A low phase-noise X-band MMIC VCO using high-linearity and low-noise composite-channel Al0.3Ga0.7N/Al0.05Ga0.95N/GaN HEMTs,” IEEE Trans. Microw. Theory Tech., vol. 55, no. 1, pp. 23–29, Jan. 2007.
    [70] L. Hang, Z. Xi, B. Chilll Chye, Y. Xiang, M. Mengda, and Y. Wanlan, "Design of ultra-low phase noise and high power integrated oscillator in 0.25 um GaN-on-SiC HEMT technology," IEEE Microw. Compon. Lett., vol. 24, pp. 120-122, 2014.
    [71] T. Ngoc Thi Do, S. Lai, M. Hörberg, H. Zirath, and D. Kuylenstierna, “A MMIC GaN HEMT voltage-controlled-oscillator with high tuning linearity and low phase noise,” 2015 IEEE Compound Semiconductor Integrated Circuit Symposium (CSICS)
    [72] S. Lai, D. Kuylenstierna, M. Ozen, M. Horberg, N. Rorsman, I. Angelov, and H. Zirath, “Low phase noise GaN HEMT oscillators with excellent figures of merit,” IEEE Microw. Wireless Compon. Lett., vol. 24, pp. 412-414, Apr. 2014.
    [73] C. Sanabria, H. Xu, S. Heikman, U. K. Mishra, and R. A. York, “A GaN differential oscillator with improved harmonic performance,” IEEE Microw. Wireless Compon. Lett., vol. 15, pp. 463–465, Jul. 2005.
    [74] C. Bansleben and W. Heinric, “ Compact high-power GaN oscillator with 2.45 GHz differential output, “Proceedings of the 43rd European Microwave Conf. 2013.
    [75] X. Lan, M. Wojtowicz, M. Truong, F. Fong, M. Kintis, B. Heying, I. Smorchkova and Y. C. Chen, "A V-band monolithic AlGaN/GaN VCO," IEEE Microw. Wireless Compon. Lett., vol. 18, pp. 407–409, Jun. 2008.
    [76] Z. Herbert, S. Lai, K. Dan, F. Jonathan, A. Kristoffer and R. Niklas, ” An X-Band low phase noise AlGaN-GaN-HEMT MMIC push-push oscillator,” 2011 IEEE Compound Semiconductor Integrated Circuit Symposium (CSICS).
    [77] S. Lai, D. Kuylenstierna, M. Hörberg, N. Rorsman, I. Angelov, K. Andersson, H. Zirath, “Accurate phase noise prediction for a balanced Colpitts GaN HEMT MMIC oscillator,” IEEE Trans. Microwave Theory & Tech., vol. 61, no. 11, pp. 3916-3926, Nov., 2013.
    [78] W. Wohlmuth, M.-H. Weng, C.-K. Lin, J.-H. Du, S.-Y. Ho, T.-Y. Chou, S. M. Li, C. Huang, W.-C. Wang, and W.-K. Wang, “AlGaN/GaN HEMT development targeted for X band applications,” 2013 IEEE Int. Conf. Microwaves, Communications, Antennas and Electronic Systems, pp.1-4.
    [79] Kenichi Okada and Kazuya Masu, Modeling of Spiral Inductors InTechOpen, Published on: 2010-04-01.
    [80] R. Weber, D. Schwantuschke, P. Bruckner, R. Quay, M. Mikulla, O. Ambacher and I. Kallfass, "A 67 GHz GaN voltage controlled oscillator MMIC with high output power," IEEE Microw. Wireless Compon. Lett., vol. 23, pp. 374–376, Jul. 2013.
    [81] V. S. Kaper, R. M. Thompson, T. R. Prunty, and J. R. Shealy, “Signal generation, control, and frequency conversion AlGaN/GaN HEMT MMICs,” IEEE Trans. Microwave Theory and Techniques, vol. 53, no. 1, pp. 55-65, Jan. 2005.
    [82] E. Reese, D. Allen, C. Lee and T. Nguyen, “Wideband power amplifier MMICs utilizing GaN on SiC,” in Digest of IEEE International Microwave Symposium, pp. 1230 – 1233, 2010.
    [83] J. Gassmann, P. Watson, L. Kehias, and G. Henry, “Wideband, high efficiency GaN power amplifiers utilizing a non-uniform distributed topology,” in IEEE MTT-S Int. Microw. Symp. Dig., Jun. 2007, pp. 615–618.
    [84] S. Masuda, M. Yamada, Y. Kamada, T. Ohki, K. Makiyama, N. Okamoto, K. Imanishi, T. Kikkawa, and H. Shigematsu, “GaN singlechip transceiver frontend MMIC for X-band applications,” in IEEE International Microwave Symposium Digest, Jun. 2012, pp. 1 –3.
    [85] Y.-H. Chuang, S.-H. Lee, R.-H. Yen, S.-L. Jang, J.-F. Lee, and M.-H. Juang, “A wide locking range and low voltage CMOS direct injection locked frequency divider,” IEEE Microw. Wireless Compon. Lett., vol. 16, no. 5, pp. 299–301, May 2006.
    [86] W. Curtice, “GaAs MESFET modeling and nonlinear CAD“, IEEE Trans Microwave Theory Tech 36 (1988), 220–230.
    [87] M. Hörberg, D. Kuylenstierna, “Low phase noise power-efficient MMIC GaN-HEMT oscillator at 15 GHz based on a quasi-lumped on-chip resonator,” in IEEE MTT-S Int. Dig., 17-22 May, Phoenix, Arizona, 2015.
    [88] S.–L. Jang, Y.-H. Chang, and W.-C. Lai,” A feedback GaN HEMT oscillator,” ICIMMT 2018, Chengdu, Sichuan, China, May 6-9, 2018.
    [89] S.–L. Jang, Y.-H. Chang, J.-S. Chiou and W.-C. Lai, “A single GaN HEMT oscillator with 4-path inductors,” IEEE ISNE-2018, Taipei, Taiwan 2018.
    [90] L. Gu, W. Che, Y. Yang, F.-H. Huang and H. C. Chiu ,” A monolithic low phase noise power oscillator using 0.35 μm GaN/Al0.27Ga0.73N MMIC process,” Int. J. Electronics Lett., 4:3, 313-322, 2016.
    [91] Z. Q. Cheng, Y. Cai, J. Liu, Y.-G. Zhou, K. M. Lau, and K. J. Chen, “A low phase-noise X-Band MMIC VCO using high-linearity and low-noise composite-channel Al0.3Ga0.7N/ Al0.05Ga0.95N/GaN HEMTs,” IEEE Trans. Microwave Theory & Tech. vol. 55, issue 1, pp. 23-29, 2007.
    [92] S.–L. Jang, et al,” An 4.7 GHz low power cross-coupled GaN HEMT oscillator ,”Microw. Opt. Technol. Lett. Accepted 2018.
    [93] S. Lai, D. Kuylenstiellla, M. Hiirberg, N. Rorsman, L Angelov, K. Andersson, and H. Zirath “Accurate phase-noise prediction for a balanced colpitts GaN HEMT MMIC oscillator,” IEEE Trans. Microw. Theory Techn., vol. 61, no. 11, pp. 3916–3926, Nov. 2013,
    [94] G. Soubercaze-Pun, J. G. Tartarin, L. Bary, J. Rayssac, E. Morvan, B. Grimbert, S. L. Delage, J.-C. De Jaeger, and J. Graffeuil, “Design of a X-band GaN oscillator: From the low frequency noise device characterization and large signal modeling to circuit design,” in IEEE MTT-S Int. Dig., Jun. 11–16, 2006, pp. 747–750.
    [95] A. V. Vertiatchikh and L. F. Eastman, “Effect of the surface and barrier defects on the AlGaN/GaN HEMT low-frequency noise performance,” IEEE Electron Device Lett., vol. 24, no. 9, pp. 535–537, Sep. 2003.
    [96] S. Levantino, C. Samori, A. Zanchi, and A. L. Lacaita, “AM-to-PM conversion in varactor-tuned oscillators,” IEEE Trans. Circuits Syst. II, Analog Digit. Signal Process., vol. 49, no. 7, pp. 509–513, Jul. 2002.
    [97] Y.-H. Chuang, S.-L. Jang, S.-H. Lee, R.-H. Yen, and J.-J. Jhao, “5-GHz low power current-reused balanced CMOS differential Armstrong VCOs,” IEEE Microw. Wireless Compon. Lett., vol. 17, no. 2, pp. 139–141, Feb. 2007.
    [98] Y.-H. Chuang, S.-H. Lee, R.-H. Yen, S.-L. Jang, and M.-H. Juang, “A low-voltage quadrature CMOS VCO based on voltage-voltage feedback topology,” IEEE Microw. Wireless Compon. Lett., vol. 16, no. 12, pp. 696–698, Dec. 2006.
    [99] S.-L. Jang and C.-F. Lee, “A low voltage and power LC VCO implemented with dynamic threshold voltage MOSFETs,” IEEE Microw. Wireless Compon. Lett., vol. 17, no. 5, pp. 376-378, May 2007.
    [100] S.-L. Jang, and J.-J. Wang, ” Low phase noise class-C VCO with dynamic body bias,” Electron Lett., Vol. 53 No. 17 pp. 1186–1188, 2017.
    [101] J. H. Leach, and H. Morkoc, "Status of reliability of GaN-based heterojunction field effect transistors", Proceedings of the IEEE, vol. 98, pp. 1127-1139, 2010.
    [102] G. Meneghesso et al., "Reliability of GaN high-electron-mobility transistors: State of the art and perspectives", IEEE Trans. Device Mater. Rel., vol. 8, no. 2, pp. 332-343, Jun. 2008.
    [103] J. A. del Alamo, J. Joh, "GaN HEMT reliability", Microelectron. Rel., vol. 49, no. 9, pp. 1200-1206, Sep. 2009.
    [104] H. Kim, R. M. Thompson, V. Tilak, T. R. Prunty, J. R. Shealy, L. F. Eastman, "Effects of SiN passivation and high-electric field on AlGaN-GaN HFET degradation", IEEE Electron Device Lett., vol. 24, no. 7, pp. 421-423, July 2003.
    [105] R. Vetury, N. Q. Zhang, S. Keller, U. K. Mishra, "The impact of surface states on the DC and RF characteristics of AlGaN/GaN HFETs", IEEE Trans. Electron Devices, vol. 48, no. 3, pp. 560-566, March 2001.
    [106] M. Meneghini, A. Stocco, R. Silvestri, G. Meneghesso, E. Zanoni, "Degradation of AlGaN/GaN high electron mobility transistors related to hot electrons", Appl. Phys. Lett., vol. 100, pp. 233508, May 2012.
    [107] Y. Puzyrev et al., "Dehydrogenation of defects and hot-electron degradation in GaN high-electron-mobility transistors", J. Appl. Phys., vol. 109, pp. 034501, Feb. 2011.
    [108] M. Silvestri, M. J. Uren, and M. Kuball, “Dynamic transconductance dispersion characterization of channel hot carrier stressed 0.25 μm AlGaN/GaN HEMTs,” IEEE Electron Device Lett., vol. 33, no. 11, pp. 1550–1552, Nov. 2012.
    [109] J. H. Du, et al,” RF performance improvement of 0.25 μm GaN HEMT foundry technology,” CS MANTECH Conf. pp.47-50, May 18th - 21st, 2015, Scottsdale, Arizona, USA

    無法下載圖示 全文公開日期 2023/08/21 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)
    全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
    QR CODE