簡易檢索 / 詳目顯示

研究生: INDHIRA KUSUMA WARDHANI
INDHIRA - KUSUMA WARDHANI
論文名稱: Simulation and Analysis of Dynamic Load Behavior in Different Headways for Taipei Rapid Transit Systems Electrical Multiple Units
Simulation and Analysis of Dynamic Load Behavior in Different Headways for Taipei Rapid Transit Systems Electrical Multiple Units
指導教授: 陳南鳴
Nan-Ming Chen
連國龍
Kuo-Lung Lian
口試委員: 廖慶隆
Ching-Lung Liao
學位類別: 碩士
Master
系所名稱: 電資學院 - 電機工程系
Department of Electrical Engineering
論文出版年: 2014
畢業學年度: 102
語文別: 英文
論文頁數: 104
中文關鍵詞: 捷運多部列車動態負載行為共用電流
外文關鍵詞: MR, multiple trains, dynamic load behavior, current sharing
相關次數: 點閱:138下載:1
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究探討台北高運量捷運電聯車的推進系統的模型。此模型以實際捷運的運轉特性為基礎,用於模擬整合多部列車的直流捷運牽引供電系統,並利用MATLAB/ Simulink分析動態負載行為。此系統模型包含多部列車運行於3個車站。本多部列車案例在60秒,90秒與120秒不同的班次間距情況下進行模擬。
    確立共用電流存在於第1列車與第2列車之間。從結果得知,在班次間距為60秒時,兩者之間有最大共用電流,第123秒為6.11千安培(從第2列車到第1列車)與第167秒為2.92千安培(從第1列車到第2列車)。然而,在班次間距為120秒時,兩者之間有最小共用電流,第125秒為5.1千安培(從第2列車到第1列車)與第167秒為2.42千安培(從第1列車到第2列車)。第三軌電壓於不同的案列下可得知,班次間距為90秒時具有最大電壓941.77伏特。最小電壓值533.29伏特也發生在班次間距為90秒時,其次是班次間距為60秒時(550.38伏特)與班次間距為120秒時(584.99伏特)。


    This research investigates the model of the propulsion system of trains for high capacity Taipei MRT system. The model is used to simulate the integrated DC rapid transit traction power supply system with multiple trains based on actual MRT operation characteristics and to analyze the dynamic load behavior using MATLAB/Simulink. The system model includes multiple trains running in three stations. The cases of multiple trains under different headways, i.e 60 sec, 90 sec, and 120 sec are simulated.
    Current sharing between 1st train and 2nd train is identified. The result shows that headway 60s has the biggest current sharing from both, 6.11 kA at 123rdsec (2nd train to 1st train) and 2.92 kA (1st train to 2nd train) at 167th sec. Whereas, headway 120s has the smallest current sharing from both, 5.1 kA at 125th sec (2nd train to 1st train) and 2.42 kA (the 1st train to 2nd train) at 167th sec. The voltage on the third rail in different cases shows that headway 90s has the highest voltage, 941.77 volt. The smallest value of voltage is 533.29 volt, also happened in headway 90s, followed by headway 60s (550.38 Volt) and headway 120s (584.99 Volt).

    Abstract i 摘要 ii Acknowledgements iii Table of Contents iv List of Figures vii List of Tables x Chapter 1 1 1.1 Background 1 1.2 Motivation 1 1.3 Objective 2 1.4 Thesis Structure 2 Chapter 2 4 2.1 Introduction 4 2.2 Taipei Mass Rapid Transit System 4 2.3 Rolling Stock in High Capacity Trains 5 2.4 DC Railway System Configuration in TRTS [5] 7 2.4.1 161 kV System 7 2.4.2 22 kV System [8] 8 2.4.3 750 Vdc System 10 2.4.4 Power Remote Control System 11 2.4.5 Emergency Power 11 2.5 Induction Motor 12 2.6 Regenerative Braking 14 2.7 Train Motion 15 2.7.1 Adhesion and Friction 16 2.7.2 Resistance 18 Chapter 3 19 3.1 Introduction 19 3.2 General Introduction of MATLAB/Simulink 19 3.3 Electric Propulsion System Architecture of MRT Trains 20 3.4 Control Modes 23 3.4.1 SPWM (Sinusoidal Pulse Width Modulation) [31,32] 23 3.4.2 Quasi Six Step [33, 34] 23 3.4.3 Six Step [35] 25 3.5 Scalar Control Model 25 3.6 Inverter Model 27 3.7 The Third Rail Model 28 3.8 Train Motion Model [39, 40] 32 3.8.1 Curvature Resistance 33 3.8.2 Gradient Resistance 34 3.8.3 Starting-Running Resistance 34 3.8.4 Acceleration Resistance 35 Chapter 4 37 4.1 Introduction 37 4.2 The Data 38 4.2.1 High Capacity MRT Passenger Weight Classification 38 4.3 Multiple MRT Trains Simulation with Different Headways 39 4.4 3 Cases of Multiple MRT Trains Simulation Results and Analysis 41 4.4.1 Speed Profile, Acceleration Profile, and Jerk Profile 41 4.4.2 Current Flowing into Trains and Voltage Supplied to Trains 52 4.4.3 Power and Energy Consumption 56 4.4.4 The Current Sharing between 1st Train and 2nd Train 61 4.4.5 The Operating Voltage of The Third Rail 76 Chapter 5 81 5.1 Conclusions 81 5.2 Future Work 83 References 84 Appendix A 89 A.1 Train Performance Data 89 A.2 Traction Motor Data 89 A.3 Gradient Data 90 A.4 Curve Data 90

    [1] http://en.wikipedia.org/wiki/History_of_rapid_transit.
    [2] K. H. Tseng and Y. F. Shiao, “The Analysis of Regenerative Braking Power for Taipei Rapid Transit Systems Electrical Multiple Units,” International Conference on Machine Learning and Cybernetics, vol. 5, no. 1, pp. 1947-1951, Xian, China, July 2012.
    [3] http://en.wikipedia.org/wiki/File:A_train_of_Xiaonanmen_Line_approaching_CKS_Meml_Hall.JPG.
    [4] http://en.wikipedia.org/wiki/Blue_Line_(Taipei_Metro).
    [5] Y. T. Hsiao and K. C. Lin, “Measurement and Characterization of Harmonics on the Taipei MRT DC System,” IEEE Transactions on Industry Applications, vol. 40, no. 6, pp.1700-1704, Nov 2004.
    [6] Siemens, Metro Taipei Tamshui/Xindian Lines Contract 303, HV-Final-System Research, Erlangen, Dec 1991.
    [7] CECI Report for Measurement and Characterization of DC Harmonics on the Taipei MRT System. 2003.
    [8] D. Yu, K. L. Lo, and X. Wang, “MRTS Traction Power Supply System Simulation Using Matlab/Simulink,” Vehicular Technology Conference, vol. 1, pp. 308-318, Glasgow, United Kingdom, May 2002.
    [9] http://electriciantraining.tpub.com/14177/css/14177_94.htm.
    [10] R. Krishnan, Electric Motor Drives, Prentice Hall, New Jersey, India, 2001.
    [11] T. F. Chan, Applied Intelligent Control of Induction Motor Drives, IEEE Press, Singapore, 2011.
    [12] K. H. Jung, D. Kim, H. Kim, and S. Hwang, Urban Transport and Hybrid Vehicles, Sciyo, Croatia, 2010.
    [13] N. J. Chiasson, M. L. Tolbert, K. J. Mckenzie, and Z. Du, “A Complete Solution to the Harmonic Elimination Problem,” Applied Power Electronics Conference and Exposition, vol. 19, no. 2, pp. 491-499, Florida, United States, 2004.
    [14] http://mesindy.com/Fincor-2230.html.
    [15] C. J. Goodman, L.K. Siu, and T.K. Ho, “A Review of Simulation Models for Railway Systems,” IEEE International Conference on Developments in Mass Transit Systems, pp. 80-85, Apr. 1998.
    [16] C. J. Goodman, “Basic Physics of Traction and Train Performance Calculations”, Course notes in Railway Systems Engineering and Integration, University of Shiefield, South Yorkshire, England, 1995.
    [17] N. Donovan, “Transpennine Trains Get Greener,” Railway Gazette International, vol.164, no. 9, pp. 715, 2008.
    [18] H. I. Andrews, Railway Traction: The Principles of Mechanical and Electrical Railway Traction, Oxford Elsevier Science, Amsterdam, 1986.
    [19] W. H. Zhang, J. Z. Chen, X. J. Wu, and X. S. Jin, “Wheel Rail Adhesion and Analysis By Using Full Scale Roller Rig,” Course notes, Munich-Freimann, 2002.
    [20] BS EN 13144, Metallic and Other Inorganic Coatings – Method for Quantitative Measurement of Adhesion by Thensile, British Standards Institution, London, 2003.
    [21] BS EN 4624, Paints and Varnishes-Pull off Test for Adhesion, British Standards Institution, London, 2003.
    [22] R. Lewis, U. Olofsson, Wheel-rail Interface Handbook, Elsevier, Lulea, Sweden, 2009.
    [23] A. Baron, M. Mossi, and S. Sibilla, “The Alleviation of the Aerodynamic Drag and Wave Effects of High-speed Trains in Very Long Tunnels,” Journal of Wind Engineering and Industrial Aerodynamics, vol. 89, no. 5, pp. 365-401, 2001.
    [24] B.P. Rochard and F. Schmid, “A Review of Methods to Measure and Calculate Train Resistances,” Proceedings of the Institution of Mechanical Engineers, Journal of Rail and Rapid Transit, vol. 214, no.4, pp. 185-199, 2000.
    [25] S. J. Chapman, MATLAB Programming for Engineers, Thomson, Toronto, Canada, 2004.
    [26] C.F. Van Loan, Introduction to Scientific Computing, Prentice Hall, New Jersey, United States, 1997.
    [27] A. Gilat, MATLAB/SIMULINK: An Introduction with Applications, John Wiley and Sons, Cambridge, New York, 2004.
    [28] B. K. Bose, “Power Electronics and Motion Control-technology Status and Recent Trends,” IEEE Transactions on Industry Applications, vol.29, no.5, pp. 902-909, August 2002.
    [29] K. Rajashekara, A. Kawamura, and K. Matsuse, “Sensorless Control of AC Motor Drivers: Speed and Position Sensorless Operation ,” IEEE Press, New Jersey, United States, 1996.
    [30] W. Hayt, J. Kemmerly, and S. Durbin, Engineering Circuit Analysis 6th Edition, McGraw-Hill Companies, Inc, USA, 2002.
    [31] P. S. Shete, R. G. Kanojiya, and N. S. Maurya, “Performance of Sinusoidal Pulse Width Modulation based Three Phase Inverter,” International Conference on Emerging Frontiers in Technology for Rural Area (EFITRA) ,Bombay, India, 2012.
    [32] K. M. Cho, W. S. Kim, and H. Jun, “A New Switching Strategy for Pulse Width Modulation (PWM) Power Converters,” IEEE Transactions on Industrial Electronics, vol. 54, no. 1, pp. 330-337, February 2007.
    [33] N. J. Chiasson, M. L. Tolbert, K. J. Mckenzie, and Z. Du, “A Complete Solution to The Harmonic Elimination Problem,” Applied Power Electronics Conference and Exposition, vol. 19, no. 2, pp. 596-602, Florida, United States, 2004.
    [34] 邱信瑋,「考量捷運實際運轉特性之列車運行模擬與分析」,碩士論文,國立台灣科技大學,民國一百零二年。
    [35] C. U. Ogbuka, “Performance Characteristics of Inverter Controlled Three Phase Induction Motor: Teaching and Research,”The Pasific Journal of Science and Technology, vol. 10, no.1, pp. 67-74, May 2009.
    [36] S. Iwnicki, Handbook of Railway Vehicle Dynamics, CRC Press, Florida, United States, 2006.
    [37] H. J. Chuang, C. S. Chen, and C. H. Lin, “Design of Optimal Coasting Speed for Saving Social Cost in Mass Rapid Transit Systems,” Proceeding of IEEE 3rd International Conference on Electric Utility Deregulation and Restructuring and Power Technologies, pp.2833-2839, Nanjing, China, April 2008.
    [38] C. S. Chen, H.J. Chuang, J.L. Chen, “Analysis of Dynamic Load Behavior for Electrified Mass Rapid Transit System,” Record of the 1999 IEEE Industry Applications Conference, pp.992-998, Phoenix, Arizona, 1999.
    [39] V. K. Khanna,”Insulated Gate Bipolar Transistor (IGBT): Theory and Design,” John Wiley and Sons, San Fransisco, United States, 2003.

    無法下載圖示 全文公開日期 2019/07/22 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)
    全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
    QR CODE