簡易檢索 / 詳目顯示

研究生: 王聖傑
Sheng-Chieh Wang
論文名稱: 考量節點相關性的私有區塊鏈資安風險評估框架
A framework to consider node correlations for permissioned blockchain security risk evaluation
指導教授: 查士朝
Shi-Cho Cha
口試委員: 羅乃維
Nai-Wei Lo
洪政煌
Cheng-Huang Hung
學位類別: 碩士
Master
系所名稱: 管理學院 - 資訊管理系
Department of Information Management
論文出版年: 2020
畢業學年度: 108
語文別: 中文
論文頁數: 70
中文關鍵詞: 區塊鏈風險評估錯誤相關性
外文關鍵詞: Blockchain, Risk Assessment, Failure Correlation
相關次數: 點閱:449下載:1
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 現今越來越多大型企業、政府單位都開始佈置區塊鏈應用,藉由區塊鏈透明可追蹤、不可竄改等特性,解決企業的痛點。而區塊鏈一般以參與方作為主要的分類方式,可以區分為公有區塊鏈及私有區塊鏈,在公有區塊鏈因其共識演算法的限制,其交易吞吐量低且交易處理時間長,導致使用成本高昂,因此企業通常會採用私有區塊鏈做為解決方案。
    組織在使用私有區塊鏈應用時,會對於私有區塊鏈有資安風險的疑慮,然而目前並沒有一個成熟的私有區塊鏈風險評估準則。因此本研究提出一個考量節點相關性的私有區塊鏈資安風險評估框架,以私有區塊鏈的可用性與完整性作為風險評估指標,用來評估私有區塊鏈的可持續營運性。除此之外相較於公有區塊鏈,私有區塊鏈的節點數目較少,且唯有經過許可的使用者才能參與,因此在評估私有區塊鏈風險時,節點間的相關性也是重要的一環,必須將私有區塊鏈各個節點間的相關性納入風險評估中,才能使評估結果更加貼近現實。


    Nowadays, more and more enterprises have applied the blockchain technology
    into their products or services. Thanks to the traceability and immutability of
    blockchain technology, the properties help them solving the pain points of
    enterprises. Blockchain technology generally use participants as the main
    classification method, which can be divided into permissionless blockchain and
    permissioned blockchain.However, due to the limitation of its consensus algorithm,
    the permissionless blockchain has low transaction volume and long processing time,
    resulting in performance bottlenecks. Therefore, enterprises use permissioned
    blockchain as a solution.
    When organizations use permissioned blockchain applications, they will have
    doubts about the security risks of permissioned blockchain. However, to the best of
    our knowledge, there is no widely acceptably permissioned blockchain risk
    assessment criteria. Therefore, this study proposed a permissioned blockchain
    security risk assessment framework that considers node correlations. First, the
    availability and integrity of permissioned blockchain are used as risk assessment
    indicators to assess the sustainable operation of permissioned blockchain.
    Furthermore, compared to permissionless blockchain, permissioned blockchain have fewer nodes, and only authorized users can participate. Therefore, the correlation
    between each node of the permissioned blockchain must be included in the risk assessment to make the assessment result closer to reality.

    目錄 摘要 II Abstract II 誌謝 III 目錄 IV 圖目錄 VI 表目錄 VII 第一章 緒論 1 1.1 研究背景與動機 1 1.2 研究目的與貢獻 2 1.3 章節介紹 3 第二章 背景知識與文獻探討 5 2.1 區塊鏈發展與介紹 5 2.2 共識演算法介紹與比較 9 2.3 區塊鏈相關威脅 17 2.3.1 常見私有區塊鏈相關攻擊 17 2.3.2 常見公有區塊鏈相關攻擊 18 第三章 問題定義與需求分析 21 第四章 私有鏈風險評估框架 23 4.1 評估指標 23 4.2 評估方法 24 4.3 相關性評估 28 第五章 風險分析案例 34 5.1 實驗模擬 34 5.2 實驗結論 52 第六章 結論與未來展望 56 6.1 結論 56 6.2 未來展望 56 參考文獻 57

    英文參考文獻
    [1] VUKOLIĆ, Marko. Rethinking permissioned blockchains. In: Proceedings of the ACM Workshop on Blockchain, Cryptocurrencies and Contracts. 2017. p. 3-7.
    [2] DINH, Tien Tuan Anh, et al. Blockbench: A framework for analyzing private blockchains. In: Proceedings of the 2017 ACM International Conference on Management of Data. 2017. p. 1085-1100.
    [3] HAO, Yue, et al. Performance analysis of consensus algorithm in private blockchain. In: 2018 IEEE Intelligent Vehicles Symposium (IV). IEEE, 2018. p. 280-285.
    [4] MOUBARAK, Joanna; FILIOL, Eric; CHAMOUN, Maroun. On blockchain security and relevant attacks. In: 2018 IEEE Middle East and North Africa Communications Conference (MENACOMM). IEEE, 2018. p. 1-6.
    [5] SAAD, Muhammad, et al. Exploring the attack surface of blockchain: A systematic overview. arXiv preprint arXiv:1904.03487, 2019.
    [6] ZHENG, Zibin, et al. Blockchain challenges and opportunities: A survey. International Journal of Web and Grid Services, 2018, 14.4: 352-375.
    [7] NAKAMOTO, Satoshi. Bitcoin: A peer-to-peer electronic cash system. Manubot, 2019.
    [8] ZHENG, Zibin, et al. Blockchain challenges and opportunities: A survey. International Journal of Web and Grid Services, 2018, 14.4: 352-375.
    [9] LIN, Iuon-Chang; LIAO, Tzu-Chun. A survey of blockchain security issues and challenges. IJ Network Security, 2017, 19.5: 653-659.
    [10] VOKERLA, Rahul Rao, et al. An Overview of Blockchain Applications and Attacks. In: 2019 International Conference on Vision Towards Emerging Trends in Communication and Networking (ViTECoN). IEEE, 2019. p. 1-6.
    [11] STEPHEN, Remya; ALEX, Aneena. A Review on BlockChain Security. In: IOP Conference Series: Materials Science and Engineering. IOP Publishing, 2018. p. 012030.
    [12] TOSH, Deepak K., et al. Security implications of blockchain cloud with analysis of block withholding attack. In: 2017 17th IEEE/ACM International Symposium on Cluster, Cloud and Grid Computing (CCGRID). IEEE, 2017. p. 458-467.
    [13] SAYEED, Sarwar; MARCO-GISBERT, Hector. Assessing blockchain consensus and security mechanisms against the 51% attack. Applied Sciences, 2019, 9.9: 1788.
    [14] ISMAIL, Leila, et al. Towards a Blockchain Deployment at UAE University: Performance Evaluation and Blockchain Taxonomy. In: Proceedings of the 2019 International Conference on Blockchain Technology. 2019. p. 30-38.
    [15] ZHANG, Rui; XUE, Rui; LIU, Ling. Security and privacy on blockchain. ACM Computing Surveys (CSUR), 2019, 52.3: 1-34.
    [16] KOLB, John, et al. Core Concepts, Challenges, and Future Directions in Blockchain: A Centralized Tutorial. ACM Computing Surveys (CSUR), 2020, 53.1: 1-39.
    [17] BAZARI, Aditya Shyam, et al. Node Criticality Assessment in a Blockchain Network. In: Proceedings of the 2nd Workshop on Blockchain-enabled Networked Sensor. 2019. p. 22-27.
    [18] MOHAN, C. State of public and private blockchains: Myths and reality. In: Proceedings of the 2019 International Conference on Management of Data. 2019. p. 404-411.
    [19] FOURNIER, Gregory; PETRILLO, Fabio. Challenges and solutions on architecting blockchain systems. In: Proceedings of the 28th Annual International Conference on Computer Science and Software Engineering. IBM Corp., 2018. p. 293-300.
    [20] GRAY, Jim; SIEWIOREK, Daniel P.. . High-availability computer systems. Computer, 1991, 24.9: 39-48.
    [21] GUEGAN, Dominique. Public blockchain versus private blockhain. 2017.
    [22] ZHENG, Zibin, et al. An overview of blockchain technology: Architecture, consensus, and future trends. In: 2017 IEEE international congress on big data (BigData congress). IEEE, 2017. p. 557-564.
    中文參考文獻
    [23] S.-C. Cha,”私有區塊鏈應用安全需求”. 國立台灣科技大學資通安全研究與教學中心

    QR CODE