簡易檢索 / 詳目顯示

研究生: 簡良榮
Liang-Jung Chien
論文名稱: 利用基因改質GRAS乳酸球菌及枯草桿菌生產醫療級產品
Genetic engineered GRAS Lactococcus lactis and Bacillus subtilis for Biopharmaceutics Production
指導教授: 李振綱
Cheng-Kang Lee
口試委員: 徐祖安
John Tsu-An Hsu
陳秀美
Hsiu-Mei Chen
李桂楨
Guey-Jen Lee-Chen
官宜靜
I-Ching Kuan
劉懷勝
Hwai-Shen Liu
學位類別: 博士
Doctor
系所名稱: 工程學院 - 化學工程系
Department of Chemical Engineering
論文出版年: 2007
畢業學年度: 95
語文別: 英文
論文頁數: 101
中文關鍵詞: 乳酸球菌枯草桿菌透明質酸B型肝炎表面抗原乳酸鏈球菌素細胞表面表現系統
外文關鍵詞: Lactococcus lactis, NICE expression, HBsAg, cell surface display system
相關次數: 點閱:272下載:2
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 乳酸球菌Lactococcus lactis與枯草桿菌Bacillus subtilis一般皆被視為GRAS級安全的菌株,而利用安全的菌株所進行生產的醫藥產品是一般大眾所能接受的。所以本論文主要是研究利用被視為安全菌株的格蘭氏陽性菌-乳酸球菌與枯草桿菌做為生產醫藥品之宿主細胞,建立起其相對應之蛋白質表現系統,並利用此表現系統進行表現玻尿酸 (HA)相關基因產生玻尿酸,此外也利用此系統表現B型肝炎表面抗原(HBsAg),並進一步研究在乳酸球菌表面表現此抗原。
    在所建構能表現玻尿酸相關基因之乳酸球菌以乳酸鏈球菌素(Nisin)進行誘導可表現出HA,在利用葡萄糖與乳糖之培養基培養下,可生產0.68克/公升的玻尿酸。此外,將透明質酸合成之相關基因(HA synthase, hasA 與UDP-glucose dehydrogenase, hasB)與透明顫菌血紅蛋白(Vitreoscilla hemoglobin)以同源交換方式插入至枯草桿菌之染色體中,建構出可合成HA之Bacillus subtilis共同表現血紅蛋白,可大幅提升玻尿酸的生產量達2.01克/公升,此濃度與傳統所操作之病原菌Streptococcus equi subsp. Zooepidemicus所產之HA濃度相當。
    此外,乳酸球菌也被用以進行疫苗蛋白表現之可行性的探討,B型肝炎表面抗原被用做目標蛋白來進行初步的研究,經由基因重組技術改質,所建構之乳酸球菌可於胞內表現出B型肝炎表面抗原;若再利用納豆菌Bacillus subtilis的表面蛋白pgsA與HBsAg融合,可利用此pgsA表面蛋白將HBsAg表現於乳酸球菌表面,如此將可大幅提升所表現之抗原與人體腸道細胞接觸的機會,增加其誘導出抗體之可行性。
    由於最終使用於人體的基因改質菌體細胞,必須不含有任何抗生素與有害人體的基因,所以我們也成功地發展出利用乳酸鏈球菌素之免疫蛋白(nisin immunity protein, nisI)與threonine營養需求缺陷之質體修補系統,透過此兩質體系統的發展將可大幅提升利用乳酸球菌於表現醫藥用蛋白質及其代謝產物的安全性。


    Generally recognized as safe (GRAS) bacteria Lactococcus lactis and Bacillus subtilis were genetically modified to make them have the capability to produce biopharmaceuticals such as hyaluroic acid and HBsAg. In addition to construct recombinant GRAS strains for biopharmaceutics production, food-grade vectors were also developed for being used in Lactococcus lactis to express the desired proteins.
    Microbial hyaluronic acid (HA), commonly produced by pathogenic Streptococcus was produced by Lactococcus lactis by co-expressing HA synthase and UDP-glucose dehydrogenase (UDP-GlcDH) of Streptococcus equi subsp. zooepidemicus in a nisin controlled expression (NICE) system. With nisin induction, the recombinant L. lactis cultured in glucose (1%) supplemented M17 medium can produce HA to concentration of 0.65 g/L.
    Hyaluronic acid (HA) producing Bacillus subtilis strains were also constructed by integration HA synthase gene (hasA) and UDP-glucose dehydrogenase gene (hasB or tauD) expression cassettes into the amyE locus of B. subtilis chromosome. All the inserted genes were under the control of a relatively strong constitutive vegII promoter of B. subtilis. HA production was enhanced at least 2 fold by co-expressing hasB or tauD with hasA. Vitreoscilla hemoglobin (VHb) was also co-expressed with the HA-expressing genes to increase HA production by B. subtilis. With the expression of VHb, not only the cell concentration was enhanced 25 % but also HA concentration was increased by 40 %. About 2.0 g/L of HA was obtained by the strain carrying VHb hasA, and tauD genes in the expression cassette after 32 h cultivation.
    The food-grade Lactococcus lactis is a potential vector to be used as a live vehicle for the delivery of heterologous proteins for vaccine and pharmaceutical purposes. For safe and effective delivery of viral antigens to the mucosal immune system, a surface antigen display system, pRKNchbv, for lactic acid bacteria using the poly--glutamic acid synthetase A protein (PgsA) of Bacillus subtilis as an anchoring matrix have been developed and could have the target protein HBsAg displayed on the cell surface of L. lactis. the food-grade vector, pNisI-C that used nisin immunity protein, nisI as selection marker and nonantibiotic plasmid selection system pHT838C containing threonine biosynthetic enzymes, lactococcal theta-type replicon, and a P170 promoter-polylinker were also developed for L. .lactis to express biopharmaceutic protein and to produce metabolites that can be used in food.

    摘 要 i Abstract ii Acknowledgement iv Table of contents v List of Tables viii List of Figures ix Chapter I Introduction 1 Chapter II Literature Review 4 2.1 Introduction 4 2.2 Plasmid 5 2.3 Selectable markers 8 2.4 Plasmid-based genetic tools 11 2.4.1 Gene expression system 12 2.4.2 Gene integration system 14 2.4.3 Food-grade expression system 17 2.5 References 21 Chapter III Hyaluronic Acid Production by Recombinant Lactococcus Lactis 30 3.1 Introduction 30 3.2 Materials and methods 32 3.2.1 Microorganisms and plasmids 32 3.2.2 Expression vectors construction 32 3.2.3 Cultivation of microorganisms 34 3.2.4 Protein extraction and purification 35 3.2.5 SDS-PAGE and Western blotting 36 3.2.6 UDP-glucose dehydrogenase assay 37 3.2.7 Hyaluronan analyses :HPLC 37 3.3 Results 38 3.3.1 Expression of hasA and hasB genes 38 3.3.2 Activity of expressed UDP-GlcDH 39 3.3.3 Hyaluronic acid production 40 3.4 Discussion 41 3.5 References 44 Page Chapter IV Enhanced Hyaluronic Acid Production in Bacillus subtilis 47 4.1 Introduction 47 4.2 Materials and Methods 49 4.2.1 Bacterial strains and plasmids 49 4.2.2 PCR cloning genes 49 4.2.3 Construction of HA-producing Bacillus subtilis strains 51 4.2.4 Cultivation of microorganisms 52 4.2.5 Analytical 52 4.3 Results and Discussion 53 4.3.1 Expression cassettes integration 53 4.3.2 UDP-Glc dehydrogenase effect on HA production 56 4.3.3 VHb effect on HA production 57 4.4 conclusion 60 4.5 References 60 Chapter V Production and targeting of the Hepatitis B Surface Antigen in Lactococcus lactis 65 5.1 Introduction 65 5.2 Materials and Methods 69 5.2.1 Microorganisms and plasmids 69 5.2.2 Expression vector construction 69 5.2.3 Cultivation of microorganisms 71 5.2.4 Membrane protein extraction 71 5.2.5 Immunofluorescence analyses 72 5.2.6 SDS-PAGE and Western blotting 72 5.3 Resulted and Discussion 72 5.3.1 Construction and expression of a surface display vector of HBsAg on L. lactis 72 5.3.2 Immunofluorescence analyses 74 5.4 References 75 Chapter VI Development of food-grade vector for Lactococcus lactis 80 6.1 Introduction 80 6.2 Materials and Mthods 83 6.2.1 Microorganisms and plasmids 83 6.2.2 Construction of the L. lactis food-grade vectors 83 Page 6.2.3 Cultivation of microorganisms 85 6.2.4 Nisin bioassay 87 6.2.5 Plasmid stability 87 6.3 Results and Discssion 90 6.3.1 Construction and testing of food-grade vector pNisI-C 90 6.3.2 Construction and testing of food-grade vector pHT838C 93 6.4 Conclusion 94 6.5 References 94 Chapter VII Summary 96

    (1)Klaenhammer, T. R., E. Altermann, F. Arigoni, A. Bolotin, F. Breidt, J. Broadbent, R. Cano, S. Chaillou, J. Deutscher, M. J. Gasson, M. van de Guchte, J. Guzzo, A. Hartke, T. Hawkins, P. Hols, R. Hutkins, M. Kleerebezem, J. Kok, O. P. Kuipers, M. W. Lubbers, E. Maguin, L. L. McKay, D. Mills, A. Nauta, R. Overbeek, H. Pel, D. Pridmore, M. Saier, D. van Sinderen, A. Sorokin, J. Steele, D. O'Sullivan, W. M. de Vos, B. Weimer, M. Zagorec, and R. Siezen. (2002) Discovering lactic acid bacteria by genomics. Antonie van Leeuwenhoek 82:29-58.
    (2) Kok, J., van der Vossen J.M., Venema, G. (1984) Construction of plasmid cloning vectors for lactic streptococci which also replicate in Bacillus subtilis and Escherichia coli. Appl EnvironMicrobiol 48: 726–731.
    (3) Otto, R., de Vos W.M., Gavrieli, J, (1982) Plasmid DNA in Streptococcus cremoris Wg2: influence of pH on selection in chemostats of a varient lacking a protease plasmid. Appl Environ Microbiol 43: 1272–1277.
    (4) Gruss, A. and Ehrlich, S.D. (1988) Insertion of foreign DNA into plasmids from Gram-positive bacteria induces formation of high-molecular-weight plasmid multimers. J Bacteriol 170: 1183–1190.
    (5) Seegers, J.F., Zhao, A.C., Meijer, W.J., Khan, S.A., Venema, G., Bron, S. (1995) Structural and functional analysis of the single-strand origin of replication from the lactococcal plasmid pWV01. Mol Gen Genet 249: 43–50.
    (6) Leenhouts, K.J. and Venema, G. (1993) Lactococcal plasmid vectors. Plasmids: A Practical Approach, Vol. 2, 2nd edn (Hardy KG, ed.) IRL Press, Inc., Oxford.
    (7) Gruss, A. and Ehrlich, S.D. (1989) The family of highly interrelated single-stranded deoxyribonucleic acid plasmids. Microbiol Rev 53: 231–241.
    (8) del Solar, G., Moscoso, M., Espinosa, M. (1993b) In vivo definition of the functional origin of replication (ori1) of the promiscuous plasmid pLS1. Mol Gen Genet 237: 65–72.
    (9) del Solar, G., Giraldo, R., Ruiz-Echevarria, M.J., Espinosa M.,Diaz-Orejas, R. (1998) Replication and control of circular bacterial plasmids. Microbiol Mol Biol Rev 62: 434–464.
    (10) Pansegrau, W. and Lanka, E. (1991) Common sequence motifs in DNA relaxases and nick regions from a variety of DNA transfer systems. Nucleic Acids Res 19: 3455.
    (11) Ilyina, T.V. and Koonin, E.V. (1992) Conserved sequence motifs in the initiator proteins for rolling circle DNA replication encoded by diverse replicons from eubacteria, eucaryotes and archaebacteria. Nucleic Acids Res 20: 3279–3285.
    (12) Koonin, E.V. and Ilyina, T.V. (1993) Computer-assisted dissection of rolling circle DNA replication. Biosystems 30: 241–268.
    (13) Seery, L.T., Nolan, N.C. Sharp, P.M., Devine, K.M. (1993) Comparative analysis of the pC194 group of rolling circle plasmids. Plasmid 30: 185–196.
    (14) Kiewiet, R., Bron, S., de Jonge, K., Venema, G.,Seegers, J.F. (1993) Theta replication of the lactococcal plasmid pWV02. Mol Microbiol 10: 319–327.
    (15)De Vos W.M., Kleerebezem, M., Kuipers, O.P. (1997) Expression systems for industrial Gram-positive bacteria with low guanine and cytosine content. Curr Opin Biotechnol 8: 547–553.
    (16)Kiewiet, R., Kok, J., Seegers, J.F., Venluna, G., Bron, S. (1993) The mode of replication is a major factor in segregational plasmid instability in Lactococcus lactis. Appl Environ Microbiol 59: 358–364.
    (17)Jarvis, A.W. (1988) Conjugal transfer in lactic streptococci of plasmid-encoded insensitivity to prolate- and small isometricheaded bacteriophages. Appl Environ Microbiol 54: 777–784.
    (18)Ward, A.C., Davidson, B.E., Hillier, A.J., Powell, I.B. (1991) Conjugally transferable phage-resistance activities from Lactococcus lactis DRC1. J Dairy Sci 75: 683–691.
    (19)Coffey, A.G., Fitzgerald, G.F., Daly, C. (1989) Identification and characterisation of a plasmid encoding abortive infection from Lactococcus lactis ssp lactis UC811. Neth Milk Dairy J 43: 229–244.
    (20)Forde, A., Daly, C., Fitzgerald, G.F. (1999) Identification of four phage resistance plasmids from Lactococcus lactis subsp. cremoris HO2. Appl Environ Microbiol 65: 1540–1547.
    (21)Sanders, M.E., Leonard, P.J., Sing, W.D., Klaenhammer, T.R. (1986) Conjugal strategy for the construction of fast-acid producing, bacteriophage-resistant lactic streptococci for use in dairyfermentations. Appl Environ Microbiol 52: 1101–1107.
    (22)Sing, W.D. and Klaenahmmer, T.R. (1986) Conjugal transfer of the bacteriophage-resistance determinants on pTR2030 into Streptococcus cremoris strains. Appl Environ Microbiol 51: 1264–1271.
    (23)Coakley, M., Fitzgerald, G., Ross, R.P. (1997) Application and evaluation of the phage resistance- and bacteriocin-encoding plasmid pMRC01 for the improvement of dairy starter cultures. Appl Environ Microbiol 63: 1434–1440.
    (24)Trotter, M., Mills, S., Ross, R.P., Fitzgerald, G.F.,Coffey, A. (2001) The use of cadmium resistance on the phage-resistance plasmid pNP40 facilitates selection for its horizontal transfer to industrial dairy starter lactococci. Lett Appl Microbiol 33: 409–414.
    (25)Mills, S., Coffey, A., O’Sullivan, L., Stokes, D., Hill, C., Fitzgerald, G.F., Ross, R.P. (2002) Use of lacticin 481 to facilitate delivery of the bacteriophage resistance plasmid pCBG104 to cheese starters. J Appl Microbiol 92: 238–246.
    (26)Pillidge, C.J., Collins, L.J., Ward, L,J., Cantillon, B.M., Shaw, B.D., Timmins, M.J., Heap, H.A., Polzin, K.M. (2000) Efficacy of four conjugal lactococcal phage-resistance plasmids against phage in commercial Lactococcus lactis subsp. cremoris cheese starter strains. Int Dairy J 10: 617–625.
    (27)McKay, L.L. and Baldwin, K.A. (1984) Conjugative 40-megadalton plasmid in Streptococcus lactis subsp. diacetylactis DRC3 is associated with resistance to nisin and bacteriophage. Appl Environ Microbiol 47: 68–74.
    (28)Harrington, A. and Hill, C. (1991) Construction of a bacteriophage resistance derivative of Lactococcus lactis ssp. lactis 425A by using the conjugal plasmid pNP40. Appl Environ Microbiol 57: 3405–3409.
    (29)Coffey, A., Coakley, M., McGarry, A., Fitzgerald, G.F., Ross, R.P. (1998a) Increasing the phage resistance of cheese starters: a case study using Lactococcus lactis DPC4268. Lett Appl Microbiol 26: 51–55.
    (30)Shareck, J., Choi, Y., Lee, B., Miguez, C.B. (2004) Cloning vectors based on cryptic plasmids isolated from lactic acid bacteria: their characteristics and potential applications in biotechnology. Crit Rev Biotechnol 24: 155–208.
    (31)van der Vossen, J.M., van der Lelie, D.,Venema, G. (1987) Isolation and characterisation of Streptococcus cremoris Wg2-specific promoters. Appl Environ Microbiol 53: 2452–2457.
    (32)Van de Guchte, M., van der Vossen, J.M., Kok, J., Venema, G. (1989) Construction of a lactococcal expression vector: expression of hen egg white lysozyme in Lactococcus lactis. Appl Environ Microbiol 55: 224–228.
    (33)Mercenier, A., Pouwels, P.H., Chassy, B.M. (1994) Genetic engineering of lactobacilli, leuconostoc and Streptococcus thermophilus. Genetics and Biotechnology of Lactic Acid Bacteria (Gasson MJ and de Vos WM, eds), Chapman and Hall, Oxford.
    (34)Jensen, P.R. and Hammer, K. (1998) Artificial promoters for metabolic optimization. Biotechnol Bioeng 58: 191–195.
    (35)Cocconcelli, P.S., Gsaaon, M.J., Morelli, L., Bottazzi, V. (1991) single-strained DNA plasmid, vector construction and cloning of Bacillus stearothermophilus alpha –amylase in lactobacillus. Res. Microbiol 142, 643-652
    (36)Vander Vossen, J. M ., Vander Lelie, D., Venema, G.. (1987) Isolation and characterization of Streptococcus cremoris Wg2-specific promoters. Appl. Environ. Microbial. 53, 2452-2457
    (37)Roy, D.G., Klaenhammer, T. R., Hassan, H.M. (1993) cloning and expression of the manganese superoxide dismutase gene of Escherichia coli in Lactococcus lactis and Lactobacillus gasseri. Mol. Gen. Genet. 239, 33-40
    (38)Gold, R.S., Meagher, M.M., Tong, S., Hutkins, R.W., Conway, T. (1996) cloning and expression of Zymomonas mobilis”production of ethanol” genes in Lactobacillus casei. Curr. Microbiol. 33.256-260
    (39)Pouwels, P.H., Leer, R.J., Boersma, W.J. (1996) The potential of Lactobacillus as a carrier for oral immunization: development and preliminary characterization of vector systems for targeted delivery of antigens. J. Biotechnol. 44, 183-192
    (40)Pouwels, P.H. and Leer, R. J. (1993) Genetics of lactobacilli :plasmids and gene expression. Antonie Van Leeuwenhoek. 64. 85-107
    (41)Kerovuo, J. and Tnkkynen, S. (2000) Expression of Bacillus subtilis phytase in Lactobacillus plantarum775. Lett. Appl. Microbiol. 30 , 325-329
    (42)Gosalbes, M.J., Esteban, C. D., Galan, J. L., Perez-Martinez, G. (2000) Integrative food-grade expression system based on the lactose regulon of Lactobacillus casei. Appl. Environ. Microbiol 66, 4822-4828
    (43)Platteeuw, C., van Alen-Boerrigter, I., van Schalkwijk, S.,de Vos W.M. (1996) Food-grade cloning and expression system for Lactococcus lactis. Appl Environ Microbiol 62: 1008–1013.
    (44)Xiang, H., Wei, W., Tan, H. (2003) Food-grade expression of human glutathione S-transferase and Cu/Zn superoxide dismutase in Lactococcus lactis. Biomol Eng 20: 107–112.
    (45)Kuipers, O.P., Beerthuyzen, M.M., Siezen, R.J., De Vos W.M. (1993) Characterization of the nisin gene cluster nisABTCIPR of Lactococcus lactis. Requirement of expression of the nisA and nisI genes for development of immunity. Eur J Biochem 216: 281–291.
    (46)Kuipers, O.P., Beerthuyzen, M.M., de Ruyter, P.G., Luesink, E.J., de Vos W.M. (1995) Autoregulation of nisin biosynthesis in Lactococcus lactis by signal transduction. J Biol Chem 270: 27299–27304.
    (47)Kleerebezem, M., Quadri, L.E., Kuipers, O.P., de Vos W.M. (1997) Quorum sensing by peptide pheromones and two-component signal-transduction systems in Gram-positive bacteria. Mol Microbiol 24: 895–904.
    (48)Kleerebezem, M., Beerthuyzen, M.M., Vaughan, E.E,, de Vos W.M., Kuipers, O.P. (1997) Controlled gene expression systems for lactic acid bacteria: transferable nisin-inducible expression cassettes for Lactococcus, Leuconostoc, and Lactobacillus spp. Appl Environ Microbiol 63: 4581–4584.
    (49)de Ruyter, P.G., Kuipers, O.P., Beerthuyzen, M.M., van Alen-Boerrigter, I., de Vos W.M. (1996) Functional analysis of promoters in the nisin gene cluster of Lactococcus lactis. J Bacteriol 178: 3434–3439.
    (50)Hols, P., Kleerebezem, M., Schanck, A.N., Ferain, T., Hugenholtz, J., Delcour, J., de Vos W.M. (1999) Conversion of Lactococcus lactis from homolactic to homoalanine fermentation through metabolic engineering. Nat Biotechnol 17: 588–592.
    (51)Hugenholtz, J., Kleerebezem, M., Starrenburg, M., Delcour, J., de Vos W., Hols, P. (2000) Lactococcus lactis as a cell factory for high level diacetyl production. Appl Environ Microbiol 66: 4112–4114
    (52)Bradford, M. M. (1976) A rapid and sensitive method for quantitation of microgram quantities of protein using the principle of protein-dye binding . Anal. Biochem, 72, 248-254
    (53)Renault, P. (2002) Genetically modified lactic acid bacteria: applications to food or health and risk assessment. Biochimie 84: 1073–1087.
    (54)Maguin, E., Duwat, P., Hege, T., Ehrlich, D., Gruss, A. (1992) New thermosensitive plasmid for Gram-positive bacteria. J Bacteriol 174: 5633–5638.
    (55)Leenhouts, K., Bolhuis, A., Venema, G., Kok, J. (1998) Construction of a food-grade multiple-copy integration system for Lactococcus lactis. Appl Microbiol Biotechnol 49: 417–423.
    (56)Martin, M.C., Alonso, J.C., Suarez, J.E., Alvarez, M.A. (2000) Generation of food-grade recombinant lactic acid bacterium strains by site-specific recombination. Appl Environ Microbiol 66: 2599–2604.
    (57)Von Wright, A., Wessels, S., Tynkkynen, S., Saarela, M. (1990) Isolation of a replication region of a large lactococcal plasmid and use in cloning of a nisin resistance determinant. ApplEnviron Microbiol 56: 2029–2035.
    (58)Froseth, B.R. and McKay, L.L.(1990) Development and application of pFM011 as a possible food-grade cloning vector. J Dairy Sci 74: 1445–1453.
    (59)Takala, T.M. and Saris, P.E. (2002) A food-grade cloning vector for lactic acid bacteria based on the nisin immunity gene nisI. Appl Microbiol Biotechnol 59: 467–471.
    (60)McAuliffe, O., Hill, C., Ross, R.P. (2000) Identification and overexpression of ltnl, a novel gene which confers immunity to the two-component lantibiotic lacticin 3147. Microbiology 146: 129–138.
    (61)Mills, S., Coffey, A., Hill, C., Fitzgerald, G.F., McAuliffe, O.E., Ross, R.P. (2004) Insertional Inactivation of the determinants for Mg21/Co21 transport, as a tool for screening recombinant clones in Lactococcus. Appl Environ Microbiol 71: 4897–4901.
    (62)MacCormick, C.A., Griffin, H.G., Gasson, M.J. (1995) Construction of a food-grade host/vector system for Lactococcus lactis based on the lactose operon. FEMS Microbiol Lett 127: 105–109.
    (63)Ross, P., O’Gara, F., Condon, S. (1990) Thymidylate synthase gene from Lactococcus lactis as a genetic marker: an alternative to antibiotic resistance genes. Appl Environ Microbiol 56: 2164–2169.
    (64)Steidler, L., Neirynck, S., Huyghebaert, N., Snoeck, V., Vermeire, A., Goddeeris, B., Cox, E., Remon, J.P., Remaut, E. (2003) Biological containment of genetically modified Lactococcus lactis forintestinal delivery of human interleukin 10. Nat Biotechnol 21: 785–789.
    (65)Boucher, I., Parrot, M., Gaudreau, H., Champagne, C.P., Vadeboncoeur, C., Moineau, S. (2002) Novel food-grade plasmid vector based on melibiose fermentation for the genetic engineering of Lactococcus lactis. Appl Environ Microbiol 68: 6152–6161.
    (66)Bron, P.A., Benchimol, M.G., Lambert, J., Palumbo, E., Deghorain, M., Delcour, J., De Vos W.M., Kleerebezem, M., Hols, P. (2002) Use of the alr gene as a food-grade selection marker in lactic acid bacteria. Appl Environ Microbiol 68: 5663–5670.
    (67)Dickely, F., Nilsson, D., Hansen, E.B., Johansen, E. (1995) Isolation of Lactococcus lactis nonsense suppressors and construction of a food-grade cloning vector. Mol Microbiol 15: 839–847.
    (68)Sorensen, K.I., Larsen, R., Kibenich, A., Junge, M.P., Johansen, E. (2000) A food-grade cloning system for industrial strains of Lactococcus lactis. Appl Environ Microbiol 66: 1253–1258.
    (69)Cotter, P.D., Hill, C., Ross, R.P. (2003) A food-grade approach for functional analysis and modification of native plasmids in Lactococcus lactis. Appl Environ Microbiol 69: 702–706.
    (70)Hickey, R.M., Twomey, D.P., Ross, R.P., Hill, C. (2001) Exploitation of plasmid pMRC01 to direct transfer of mobilizable plasmids into commercial lactococcal starter strains. Appl Environ Microbiol 67: 2853–2858.

    無法下載圖示 全文公開日期 2012/07/30 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)
    全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
    QR CODE