簡易檢索 / 詳目顯示

研究生: 周宜禾
Yi-Ho Chou
論文名稱: DLP型3D列印氧化鋁應用於雙氧水觸媒載體
Applying DLP-type 3D printing alumina in hydrogen peroxide to catalyst carrier
指導教授: 鄭逸琳
Yih-Lin Cheng
口試委員: 蔡榮庭
魏世昕
學位類別: 碩士
Master
系所名稱: 工程學院 - 機械工程系
Department of Mechanical Engineering
論文出版年: 2023
畢業學年度: 112
語文別: 中文
論文頁數: 93
中文關鍵詞: 光固化3D列印γ-Al2O3氧化鑭觸媒載體
外文關鍵詞: Photocurable 3D printing, γ-Al2O3, lanthanum oxide, catalyst carrier
相關次數: 點閱:52下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 顆粒狀的γ-Al2O3常當做為觸媒載體材料,並隨機裝載在不鏽鋼觸媒床,當與雙氧水反應時因雙氧水分解過程中產生的壓力和溫度急劇升高觸媒載體可能會沖散。3D列印陶瓷通常列印完後需燒結以增強機械強度,但高溫會使γ-Al2O3相轉變為α-Al2O3造成比表面積降低。因此本研究透過在光固化樹脂中添加氧化鑭來減緩γ-Al2O3因燒結過程中相變成α-Al2O3,希望能兼具比表面積與機械性質。
    本研究所採用的光固化陶瓷漿料為樹脂中添加六種不同氧化鑭與γ-Al2O3比例粉末,並針對其3D列印,探討不同比例及燒結溫度對比表面積與機性質的影響。根據氮氣吸附結果得知比表面積會隨著燒結溫度增加而減少。氧化鑭與氧化鋁莫耳比為1:2.19 mol、1:3.26 mol、1:76.1 mol、1:130 mol在燒結溫度為900與950℃時比表面積下降斜率一致,但 1:1 mol比表面積大幅下降,代表添加少量鑭可以減少比表面積下降。1:3.26 mol在燒結溫度950℃開始超越0:1 mol,且壓縮強度為1:79.1 mol與1:130 mol在燒結溫度為950℃壓縮強度減少2.05倍與2.3倍。


    Granular γ-Al2O3 is commonly used as a catalyst carrier material and loaded randomly into a stainless steel catalyst bed. During the hydrogen peroxide decomposition process, the pressure and temperature sharply increase, potentially causing the dispersion of the catalyst carrier.3D printing ceramics usually undergo sintering to enhance mechanical strength. However, the high temperature during sintering can cause γ-Al2O3 to transform into α-Al2O3, leading to a reduction in surface area.This study aims to mitigate the transformation of γ-Al2O3 into α-Al2O3 during sintering by adding lanthanum oxide to the photocurable resin, hoping to achieve a balance between surface area and mechanical properties.
    The photocurable ceramic slurry used in this study involves adding six different ratios of lanthanum oxide to γ-Al2O3 powder in the resin. Investigates the effects of different ratios and sintering temperatures on surface area and mechanical properties through 3D printing. According to nitrogen adsorption results, surface area decreases with an increase in sintering temperature. For the mole ratio of lanthanum oxide to aluminum oxide 1:2.19 mol, 1:3.26 mol, 1:76.1 mol, and 1:130 mol, the surface area reduction rates are consistent at sintering temperatures of 900 and 950°C. However, the surface area significantly decreases for a 1:1 mol ratio, indicating that adding a small amount of lanthanum can reduce the decrease in surface area. At the sintering temperature of 950°C, the ratio of 1:3.26 mol surpasses 0:1 mol, and the compressive strength for ratios of 1:79.1 mol and 1:130 mol decreases by 2.05 times and 2.3 times.

    摘 要 I 致 謝 IV 圖目錄 IX 表目錄 XIII 第1章 緒論 1 1.1 研究背景 1 1.2 研究動機與目的 2 1.3 研究方法 3 1.4 論文架構 5 第2章 文獻探討 6 2.1 積層製造技術 6 2.1.1 積層製造技術簡介 6 2.1.2 光聚合固化技術(Vat Photopolymerization) 7 2.2 3D列印陶瓷 8 2.2.1 Vat Photopolymerization(光固化成型技術) 9 2.2.2 Material Extrusion 15 2.3 減少下照式光固化拉拔力方式 18 2.4 氧化鋁相變化之研究 20 2.5 抑制α-Al2O3成核研究 21 2.6 雙氧水觸媒載體 23 2.7 本實驗室相關研究回顧 23 2.8 文獻探討總結 24 第3章 實驗設備、材料與列印參數介紹 26 3.1 下照式DLP型3D列印機 26 3.1.1 動態光罩產生器 27 3.1.2 控制軟體 28 3.2 設備與儀器 29 3.2.1 抑制膜 29 3.2.2 離心式脫泡攪拌器 30 3.2.3 X光繞射儀 31 3.2.4 光功率測量儀 32 3.2.5 氮氣吸附儀 32 3.2.6 真空脫氣機 33 3.2.7 熱重分析 34 3.2.8 機械性能測試 35 3.2.9 高溫爐 37 3.2.10 熱風循環烘箱 37 3.3 光固化陶瓷漿料 38 3.3.1 陶瓷粉末 38 3.3.2 氧化鑭粉末 39 3.3.3 光固化樹脂 39 3.3.4 光固化丙烯酸脂單體選用 43 3.3.5 光固化陶瓷樹脂漿料混合方法 45 3.4 氧化鋁與氧化鑭比例選用 45 3.4.1 Al2O3- La2O3與光固化樹脂比例選用 46 3.4.2 光固化陶瓷樹脂漿料混合結果 47 3.5 列印方式與參數設定 48 3.5.1 列印方式 48 3.5.2 列印模式參數設定 49 3.6 參數對列印物件之影響 51 3.6.1 不同光源強度對固化深度影響 53 3.6.2 不同拉拔速度的選用 55 第4章 燒結溫度之探討 57 4.1 熱重分析 57 4.2 燒結溫度對比表面積的影響 60 4.2.1 比表面積結果分析 61 4.3 燒結溫度對機械強度的影響 71 4.4 小結 82 第5章 結論與未來研究方向 85 5.1 結論 85 5.2 未來研究方向 86 第6章 參考文獻 86

    [1] Reid, S., Lecarpentier, F., Symons, D., & Watson, M. (2023). Towards an advanced 3D-printed catalyst for hydrogen peroxide decomposition: Development and characterisation. Catalysis Today, 418, 114155.
    [2] Surmacz, P., Kostecki, M., Gut, Z., & Olszyna, A. (2019). Aluminum Oxide–Supported Manganese Oxide Catalyst for a 98% Hydrogen Peroxide Thruster. Journal of Propulsion and Power, 35(3), 614-623.
    [3] Bonifacio, S., Festa, G., & Sorge, A. R. (2013). Novel structured catalysts for hydrogen peroxide decomposition in monopropellant and hybrid rockets. Journal of Propulsion and Power, 29(5), 1130-1137.
    [4] Vaccari, A. (1998). Preparation and catalytic properties of cationic and anionic clays. Catalysis today, 41(1-3), 53-71.
    [5] Jo, S. (2017). Response characteristics of H2O2 monopropellant thrusters with MnO2-mixed PbO catalyst. Aerospace Science and Technology, 60, 1-8.
    [6] Santoliquido, O., Colombo, P., & Ortona, A. (2019). Additive Manufacturing of ceramic components by Digital Light Processing: A comparison between the “bottom-up” and the “top-down” approaches. Journal of the European Ceramic Society, 39(6), 2140-2148.
    [7] GmbH公司,(2024,Janunary 24),3D列印市場介紹,https://lithoz.com/en/lithoz-reaffirms-global-market-leadership-position-in-ceramic-3d-printing-according-to-new-voxelmatters-report/
    [8] Admatec公司,(2024,Janunary 24),產品介紹, https://admateceurope.com/admaflex130.
    [9] Wang, H., Wang, P., Wang, Q., Zhang, R., & Zhang, L. (2021). Preparation of a high-precision gama-Al2O3 structured catalyst by DLP 3D direct printing for hydrogen production from methanol. Industrial & Engineering Chemistry Research, 60(35), 13107-13114.
    [10] Ye, Y., Du, Y., Hu, T., You, J., Bao, B., Wang, Y., & Wang, T. (2021). 3D printing of integrated ceramic membranes by the DLP method. Industrial & Engineering Chemistry Research, 60(26), 9368-9377.
    [11] Wang, J. C. (2013). A novel fabrication method of high strength alumina ceramic parts based on solvent-based slurry stereolithography and sintering. International Journal of Precision Engineering and Manufacturing, 14, 485-491.
    [12] Pan, Z., Wang, D., Guo, X., Li, Y., Zhang, Z., & Xu, C. (2022). High strength and microwave-absorbing polymer-derived SiCN honeycomb ceramic prepared by 3D printing. Journal of the European Ceramic Society, 42(4), 1322-1331.
    [13] Zhang, G., Zou, B., Wang, X., Yu, Y., & Chen, Q. (2023). Design, manufacturing and properties of controllable porosity of ceramic filters based on SLA-3D printing technology. Ceramics International, 49(1), 1009-1019.
    [14] Roohani, I., Entezari, A., & Zreiqat, H. (2023). Liquid crystal display technique (LCD) for high resolution 3D printing of triply periodic minimal surface lattices bioceramics. Additive Manufacturing, 74, 103720.
    [15] Tang, S., Yang, Y., Yang, L., & Fan, Z. (2022). A green extrusion-based 3D printing of hierarchically porous aluminum. Powder Technology, 399, 117198.
    [16] Yang, L., Zeng, X., Ditta, A., Feng, B., Su, L., & Zhang, Y. (2020). Preliminary 3D printing of large inclined-shaped alumina ceramic parts by direct ink writing. Journal of Advanced Ceramics, 9, 312-319.
    [17] Maurath, J., & Willenbacher, N. (2017). 3D printing of open-porous cellular ceramics with high specific strength. Journal of the European Ceramic Society, 37(15), 4833-4842.
    [18] Biswas, P., Mamatha, S., Naskar, S., Rao, Y. S., Johnson, R., & Padmanabham, G. (2019). 3D extrusion printing of magnesium aluminate spinel ceramic parts using thermally induced gelation of methyl cellulose. Journal of Alloys and Compounds, 770, 419-423.
    [19] Owen, D., Hickey, J., Cusson, A., Ayeni, O. I., Rhoades, J., Deng, Y., ... & Zhang, J. (2018). 3D printing of ceramic components using a customized 3D ceramic printer. Progress in additive manufacturing, 3, 3-9.
    [20] Tumbleston, J. R., Shirvanyants, D., Ermoshkin, N., Janusziewicz, R., Johnson, A. R., Kelly, D., ... & DeSimone, J. M. (2015). Continuous liquid interface production of 3D objects. Science, 347(6228), 1349-1352.
    [21] Jeng, J.Y., Cheng, Y.L., Chen, D.S., Chen, Z.Y.“Method for
    reducing drawing force in forming process of photocurable material”April 6, 2 ,US 10,967,563 B2.
    [22] 蔡昀,“DLP型高速列印槽底抑制薄膜之改善”,國立臺灣科技大學機械工程研究所,碩士論文,2021。
    [23] Shkolnik, A., El-Siblani, A., & John, H. (2011). U.S. Patent No. 7,892,474. Washington, DC: U.S. Patent and Trademark Office.
    [24] Krokidis, X., Raybaud, P., Gobichon, A. E., Rebours, B., Euzen, P., & Toulhoat, H. (2001). Theoretical study of the dehydration process of boehmite to γ-alumina. The Journal of Physical Chemistry B, 105(22), 5121-5130.
    [25] Rudolph, M., Salomon, A., Schmidt, A., Motylenko, M., Zienert, T., Stöcker, H., ... & Rafaja, D. (2017). Thermally induced formation of transition aluminas from boehmite. Advanced Engineering Materials, 19(9), 1700141.
    [26] Busca, G. (2014). Structural, surface, and catalytic properties of aluminas. In Advances in catalysis (Vol. 57, pp. 319-404). Academic Press.
    [27] Asikin-Mijan, N., AbdulKareem-Alsultan, G., Mastuli, M. S., Salmiaton, A., Mohamed, M. A., Lee, H. V., & Taufiq-Yap, Y. H. (2022). Single-step catalytic deoxygenation-cracking of tung oil to bio-jet fuel over CoW/silica-alumina catalysts. Fuel, 325, 124917.
    [28] Fu, L., Yang, H., Hu, Y., Wu, D., & Navrotsky, A. (2017). Tailoring mesoporous γ-Al2O3 properties by transition metal doping: a combined experimental and computational study. Chemistry of Materials, 29(3), 1338-1349.
    [29] Alsawat, M., Altalhi, T., Kumeria, T., Santos, A., & Losic, D. (2015). Carbon nanotube-nanoporous anodic alumina composite membranes with controllable inner diameters and surface chemistry: Influence on molecular transport and chemical selectivity. Carbon, 93, 681-692.
    [30] Tadic, M., Panjan, M., Tadic, B. V., Kralj, S., & Lazovic, J. (2022). Magnetic properties of mesoporous hematite/alumina nanocomposite and evaluation for biomedical applications. Ceramics International, 48(7), 10004-10014.
    [31] Prins, R. (2020). On the structure of γ-Al2O3. Journal of Catalysis, 392, 336-346.
    [32] Samain, L., Jaworski, A., Edén, M., Ladd, D. M., Seo, D. K., Garcia-Garcia, F. J., & Häussermann, U. (2014). Structural analysis of highly porous γ-Al2O3. Journal of Solid State Chemistry, 217, 1-8.
    [33] Zhou, R. S., & Snyder, R. L. (1991). Structures and transformation mechanisms of the η, γ and θ transition aluminas. Acta Crystallographica Section B: Structural Science, 47(5), 617-630.
    [34] Luo, Z. (2021). Structure of boehmite-derived γ-alumina and its transformation mechanism revealed by electron crystallography. Acta Crystallographica Section B: Structural Science, Crystal Engineering and Materials, 77(5), 772-784.
    [35] Ren, T., Nforbi, L. N. N., Kanakala, R., & Graeve, O. A. (2018). Phase stability and mechanisms of transformation of La-doped γ-alumina. Inorganic Chemistry, 57(6), 3035-3041.
    [36] Shabani, S., Mirkazemi, S. M., Rezaie, H., Vahidshad, Y., & Trasatti, S. (2022). A comparative study on the thermal stability, textural, and structural properties of mesostructured γ-Al2O3 granules in the presence of La, Sn, and B additives. Ceramics International, 48(5), 6638-6648.
    [37] Smith, S. J., Huang, B., Bartholomew, C. H., Campbell, B. J., Boerio-Goates, J., & Woodfield, B. F. (2015). La-dopant location in La-doped γ-Al2O3 nanoparticles synthesized using a novel one-pot process. The Journal of Physical Chemistry C, 119(44), 25053-25062.
    [38] Lee, S., Kang, S., Kwon, S., & Park, G. (2016). Lanthanum hexaaluminate catalyst support in a hydrogen peroxide thruster. Journal of Propulsion and Power, 32(5), 1302-1304.
    [39] Jeong, J., Rang, S., Ugolini, V. M. P., & Kwon, S. (2022). Hypergolicity improvement by activated carbon-supported catalysts for hydrogen peroxide oxidizer. Acta Astronautica, 198,720-727.
    [40] Heo, S., Jo, S., Yun, Y., & Kwon, S. (2018). Effect of dual-catalytic bed using two different catalyst sizes for hydrogen peroxide thruster. Aerospace Science and Technology, 78, 26-32.
    [41] 翁于倫,“DLP 3D列印多孔陶瓷及其於微過濾與SOFC陽極之應用”,國立臺灣科技大學機械工程研究所,碩士論文,2020。
    [42] Brunauer, S., Emmett, P. H., & Teller, E. (1938). Adsorption of gases in multimolecular layers. Journal of the American chemical society, 60(2), 309-319.
    [43] ASTM 網站,(2024,Janunary 24),標準壓縮強度規格PDF,https://compass.astm.org/document/?contentCode=ASTM%7CD4179-22%7Cen-US&proxycl=https%3A%2F%2Fsecure.astm.org&fromLogin=true
    [44] Merck公司,(2024,Janunary 24),產品資訊,https://www.sigmaaldrich.com/TW/en/product/aldrich/415952.
    [45] 大阪有機化學工業株式會社,(2024,Janunary 24),產品資訊,https://www.ooc.co.jp/en/products/chemical/monofunctional/CTFA [46]Béguin, B., Garbowski, E., & Primet, M. (1991). Stabilization of alumina by addition of lanthanum. Applied catalysis, 75(1), 119-132. [47]Nair, J., Nair, P., Mizukami, F., Van Ommen, J. G., Doesburg, G. B., Ross, J. R., & Burggraaf, A. J. (2000). Pore structure evolution of lanthana–alumina systems prepared through coprecipitation. Journal of the American Ceramic Society, 83(8), 1942-1946.
    [48] Ropp, R. C., & Carroll, B. (1980). Solid‐state kinetics of LaAl11O18. Journal of the American Ceramic Society, 63(7‐8), 416-419.
    [49] Cui, M., Zhai, Z., Wang, H., Hou, Y., Zhang, Y., & Huang, X. (2019). Effects of precursor moisture and inert N2 atmosphere calcinations on structure and properties of alumina modified CeZrLaNd mixed oxides. Journal of Rare Earths, 37(6), 609-616.

    無法下載圖示
    全文公開日期 2122/01/24 (校外網路)
    全文公開日期 2029/01/24 (國家圖書館:臺灣博碩士論文系統)
    QR CODE