簡易檢索 / 詳目顯示

研究生: 許兆宏
Chao-Hung Hsu
論文名稱: 以Ar/O2感應耦合電漿低溫氧化4H碳化矽初期階段之探討
Initial stage of low-temperature oxidation of 4H-SiC in Ar/O2 inductively coypled plasma
指導教授: 洪儒生
Lu-Sheng Hong
陳良益
Liang-Yih Chen
口試委員: 洪儒生
Lu-Sheng Hong
陳良益
Liang-Yih Chen
周賢鎧
Shyan-kay Jou
學位類別: 碩士
Master
系所名稱: 工程學院 - 化學工程系
Department of Chemical Engineering
論文出版年: 2022
畢業學年度: 110
語文別: 中文
論文頁數: 74
中文關鍵詞: 碳化矽感應耦合電漿氧化初期成長
外文關鍵詞: Silicon carbide, Inductively-coupled plasma, Oxidation, Initial growth
相關次數: 點閱:283下載:1
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

本研究乃以實驗室組裝之感應耦合電漿(ICP)反應系統來低溫氧化4H碳化矽晶片以製備閘極介電層。實驗上,以連結反應腔體至X射線光電子能譜儀(XPS)測量腔體,達到階段氧化後可不需暴露試片於大氣即可進行氧化表面鍵結變化的探討。
實驗結果顯示,選擇氬/氧(Ar/O2)混合氣體流量比為9:1、ICP電漿功率為50W、總壓為270 mTorr之電漿放電條件下,初期10分鐘內碳化矽的氧化速率約為0.28 Å/min;之後呈現較慢的0.12 Å/min。又當氧化時間增加到90分鐘時,試片表面XPS Si 2p鍵結訊號已經由原本的SiC鍵結位置幾乎完全轉化為峰值為104.3 eV 的SiO2鍵結,此時氧化層厚度約達1.2奈米。這表示使用 Ar/O2-ICP電漿氧化碳化矽時,SiC過渡到SiO2之界面中間層厚度遠小於一般熱氧化製程的5奈米,即低溫ICP電漿氧化法確實可獲得氧化轉化較陡峭的4H-SiC/SiO2界面。


In this study, an inductively coupled plasma (ICP) reaction system was assembled to oxidize 4H-SiC wafers at low temperatures to produce gate dielectric layers. Experimentally, the reaction chamber was connected to an X-ray photoelectron Spectrometer (XPS) for direct measurement of the oxidized surface of the sample without exposure to the atmosphere.
The experimental results showed that the oxidation rate of silicon carbide in the first 10 minutes was about 0.28 Å/min; after that, it slowed down to 0.12 Å/min under a gas mixture ratio of argon/oxygen (Ar/O2) = 9:1, an ICP plasma power of 50 W, and a total pressure of 270 mTorr. When the oxidation time was increased to 90 minutes, the XPS Si 2p binding signal of the sample completely converted from SiC binding energy to SiO2 binding energy at 104.3 eV. At this time, the thickness of the oxide layer was about 1.2 nm. This means that the thickness of the intermediate layer for the transition from SiC to SiO2 is much smaller than that of the general thermal oxidation process (usually>5 nm) when using the Ar/O2-ICP process. That is, the low-temperature ICP plasma oxidation method can obtain a 4H-SiC/SiO2 interface with a steeper oxidation conversion distribution.

中文摘要 i Abstract ii 致謝 iii 目錄 iv 圖目錄 vi 表目錄 ix 第一章 緒論 1 1.1前言 1 1.2 研究動機 5 第二章 文獻回顧 6 2.1 碳化矽材料特性 6 2.1.1 晶體結構 6 2.1.2 能帶間隙 9 2.1.3 高崩潰電場 11 2.1.4 載子遷移率 12 2.1.5 熱傳導性質 14 2.2 MOSFET元件介紹及工作原理 16 2.2.1 MOSFET結構 16 2.2.2 MOSFET元件之工作機制 16 2.3 SiO2/SiC界面層缺陷 17 2.3.1 SiO2/SiC界面缺陷與電子通道遷移率之關係 17 2.3.2 界面缺陷密度(interface trap densities, Dit) 20 2.3.3 近界面氧化物缺陷(near interface oxide traps, NIOTs) 21 2.3.4 SiO2/SiC介面缺陷之化學探討 22 2.4 感應耦合電漿 25 2.4.1感應耦合電漿原理 25 2.4.2感應耦合電漿之優勢 26 第三章 實驗設備流程與材料資訊 28 3.1實驗流程及設備 28 3.1.1 SiC晶片清洗 28 3.1.2 ICP電漿氧化過程 30 3.1.3實驗設備 31 3.2實驗材料 34 3.3分析儀器 36 3.3.1 X射線光電子能譜化學分析儀 (X-ray photoelectron Spectrometer, XPS) 36 第四章 結果與討論 38 4.1 Ar/O2混合氣之感應耦合電漿初期氧化過程探討 38 4.1.1 不同感應耦合電漿處理時間時碳化矽晶片的表面鍵結狀態變化 38 4.1.2 不同Ar:O2比例對氧化狀態之影響 47 4.2 感應耦合電漿輔助氧化添加ClO2之現象 51 第五章 結論 56 第六章 參考資料 57

1. T. Kimoto, “Material science and device physics in SiC technology for high-voltage power devices,” Japanese Journal of Applied Physics, vol. 54, 040103, (2015)
2. I. D. Irwin, J. David, “ The Industrial Electronics Handbook,” CRC Press., p. 220, (1997)
3. N. Iwamuro and T. Laska, “IGBT History, State-of-the-Art, and Future Prospects,” IEEE Transactions on Electron Devices, vol. 64, no. 3, (2017)
4. H. Sheng, Z. Chen, F. Wang, A Millner, “Investigation of 1.2 kV SiC MOSFET for High Frequency High Power Applications,” Applied Power Electronics Conference and Exposition, p.1572, (2010)
5. Z. Chen, D. Boroyevich, J. Li, “Behavioral Comparison of Si and SiC Power MOSFETs for High-Frequency Applications,” Twenty-Eighth Annual IEEE Applied Power Electronics Conference and Exposition, p.12453-2460, (2013)
6. M. Nitzsche, C. Cheshire, M. Fischer, J.s Ruthardt, J. Roth-Stielow, “Comprehensive Comparison of a SiC MOSFET and Si IGBT Based Inverter,” PCIM Europe, p1828-1834, (2019)
7. K. Järrendahl and R. F. Davis, “Materials Properties and Characterization of SiC,” Semiconductors and Semimetals, vol. 52 , 1-20, (1998)
8. T. Kimoto and J. A. Cooper, “Fundamentals of silicon carbide technology: growth, characterization, devices and applications,” Wiley, (2014)
9. G. A. Slack, “Thermal Conductivity of Pure and Impure Silicon, Silicon Carbide, and Diamond,” Journal of Applied Physics, vol. 35 , no.12, (1964)
10. C. C. Welch, D. L. Olynick, Z. Liu, A. Holmberg, C. Peroz, A. P. G. Robinson, M. D. Henry, A. Scherer, T. Mollenhauer, V. Genova and D. K. T. Ng, “Formation of Nanoscale Structures by Inductively Coupled Plasma Etching,” International Conference Micro- and Nano-Electronics 2012, 870002, (2013)
11. S. M. Sze and K. K. Ng, “ Physics of Semiconductor Devices,” Wiley, (2007)
12. V. R. Vathuly and M. H. White, “Characterization and performance comparison of the power DIMOS structure fabricated with a reduced thermal budget in 4H and 6H-SiC,” Solid-State Electronics, vol. 44, 309, (2000)
13. V. V. Afanas’ev and A. Stesmans, “Interfacial Defects in SiO2 Revealed by Photon Stimulated Tunneling of Electrons,” Physical Review letters, vol. 78, no.12, (1997)
14. G. Pensl, F. Ciobanu, T. Frank, D. Kirmse, M. Krieger, S. Reshanov, F. Schmid, M.Weidner, T. Ohshima,and H. Itoh, W.J. Choyke, “Defect-engineering in SiC by ion implantation and electron irradiation,” Microelectronic Engineering, vol. 83, 146 , (2006)
15. P. Fiorenza, F. Giannazzo and F. Roccaforte, “ Characterization of SiO2/4H-SiC Interfaces in 4H-SiC MOSFETs: A Review,” Energies, vol. 12, (2019)
16. P. Fiorenza1, F. Iucolano, G. Nicotra1, C. Bongiorno1, I. 16. Deretzis, A. L. Magna, F. Giannazzo, M. Saggio, C. Spinella, F. Roccaforte, “Electron trapping at SiO2/4H-SiC interface probed by transient capacitance measurements and atomic resolution chemical analysis,” Nanotechnology, vol. 29, no.39, (2019)
17. Y. Fujino and K. Kita, “Estimation of near-interface oxide trap density at SiO2/SiC metal-oxide-semiconductor interfaces by transient capacitance measurements at various temperatures,” Journal of Applied Physics, vol. 120, 085710, (2016)
18. C. R. Helms, “Morphology and electronic structure of Si–SiO2 interfaces and Si surfaces,” Journal of Vacuum Science and Technology, vol. 16, 608, (1979)
19. S. T. Pantelides, S. Wang, A. Franceschetti, R. Buczko, M. Di.Ventra, S. N. Rashkeev, L. Tsetseris, M. H. Evans, I. G. Batyrev, L. C. Feldman, S. Dhar, K. McDonald, R. A. Weller, R. D. Schrimpf, D. M. Fleetwood, X. J. Zhou, J. R. Williams, C. C. Tin, G. Y. Chung, T. Isaacs-Smith, S. R. Wang, S. J. Pennycook, G. Duscher, K. van Benthem and L. M. Porter, “Si/SiO2 and SiC/SiO2 Interfaces for MOSFETs Challenges and Advances,” Materials Science Forum, vol. 527-529, (2006)
20. H. Xu, Q. Wang, H. Xiao, X. Li, X. Su, M. Tang, L. Chen and S. Li, “In situ preparation of C–SiCxOy coatings with controllable composition on continuous oxygenenriched SiC fibres” RSC Advances, vol. 9, no.9, 1319, (2019)
21. C. Önneby, and C. G. Pantano, “ Silicon oxycarbide formation on SiC surfaces and at the SiC/SiO2 interface,” Journal of Vacuum Science & Technology, vol. 15, 1597, (1997)
22. M. S. Hu, L. S. Hong, “Surface carbonization of Si(1 1 1) by C2H2 and the subsequent SiC(1 1 1) epitaxial growth from SiH4 and C2H2,” Journal of Crystal Growth, vol. 265, 382-398, (2004)
23. S. Tanurna, C. J. Powell and D. R. Penn, “Calculations of Electron Inelastic Mean Free Paths,” Surface and Interface Analysis, vol. 17, pp.927-939, (1991)
24. Y. Hijikata, H. Yaguchi, M. Yoshikawa and S. Yoshida, “Composition analysis of SiO2/SiC interfaces by electron spectroscopic measurements using slope-shaped oxide films.” Applied Surface Science, vol. 184, 161-166, (2001)
25. E. G. Thorsteinsson and J. T. Gudmundsson, “The low pressure Cl2/O2 discharge and the role of ClO,” Plasma Sources Science Technology, vol. 19, (2010)
26. 國科會精密儀器發展中心, “真空技術與應用,” 全華圖書, (2004)
27. A. Jablonski and C. J. Powell, “Relationships between electron inelastic mean free paths, effectiveattenuation lengths, and mean escape depths,” Journal of Electron Spectroscopy and Related Phenomena, vol. 100, 137–160, (1999)
28. B. R. Strohmeier, “An ESCA Method for Determining the Oxide Thickness on Aluminum Alloys,” Surface and Interface Analysis, vol. 15, 51-56, (1990)

QR CODE