簡易檢索 / 詳目顯示

研究生: 蘇文怡
Wen-yi Su
論文名稱: 具streptavidin親合性標籤之N-carbamoyl-D-amino acid amidohydrolase融合蛋白之研究
Study of N-carbamoyl-D-amino acid amidohydrolase fused with streptavidin-affinity peptides
指導教授: 陳秀美
Hsiu-mei Chen
口試委員: 朱義旭
Yi-shu Ju
方翠筠
Tsuei-yun Fang
學位類別: 碩士
Master
系所名稱: 工程學院 - 化學工程系
Department of Chemical Engineering
論文出版年: 2005
畢業學年度: 93
語文別: 中文
論文頁數: 139
中文關鍵詞: 卵白素親和胜肽
外文關鍵詞: N-carbamoyl-D-amino acid amidohydrolase
相關次數: 點閱:202下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本論文主要針對先前以壓電生物感測晶片與微陣列細胞生物晶片,對鞭毛隨機胜肽組合庫篩選出對streptavidin (SAv)具有較強親和性之四段不同胜肽鏈作進一步探討。首先將此四段胜肽分別以基因重組技術接合於N-carbamoyl-D-amino acid amidohydrolase(DCase)酵素之C端,以大腸桿菌BL21(DE3)成功表現出DCase-aJ21、DCase-bJ13、DCase-hM8、DCase-strepII等融合蛋白,並進行活性分析,而後再分別以SAv凝膠與修飾有SAv之壓電晶片注流式系統對重組蛋白進行親和性分析。由活性分析之結果可得知DCase-hM8的活性不受融合標籤之影響,其比活性甚至高於原生種,約為4.3 U/mg。爾後於SAv凝膠分析中,以蛋白質電泳以及濃度分析確認此些酵素確實與SAv具有親和性;其中與SAv凝膠親和性最強之融合酵素為DCase- bJ13,其Kd值約為4.9 μM;而其與SAv壓電晶片之Kd值則低達1.07 μM。最後綜觀兩分析系統之結果,可確知DCase-bJ13與SAv之親和性最高,因此bJ13胜肽最適合當作SAv親和性標籤。


    This study continues the previous researches where biopanning, microarrays, and piezoelectric (PZ) biochips were sequentially used to screen four streptavidin (SAv) affinity peptides from an E.coli flagellum-displayed random peptide library. Those four peptides were individually fused to the C terminus of N-carbamoyl-D-amino acid amidohydrolase (DCase) and expressed in E. coli BL21 (DE3), yielding four fusion proteins, DCase-aJ21, DCase-bJ13, DCase-hM8 and DCase-strepII, respectively. The proteins were subsequently each assayed for their enzymatic activities and SAv affinities using SAv gels and flow-injection SAv-PZ biochips. The DCase-hM8 enzyme showed a specific activity of 4.3 U/mg, which is the most active one among all DCase and DCase fusion proteins. The SDS-PAGE and protein concentration assays conformed the SAv-binding affinities of all fusion proteins, with DCase-bJ13 possessing the highest affinity with dissociation constants (Kd) of 4.91 μM when analyzed using SAv gels and of 1.07 μM when analyzed using SAv-PZ biochips. It is concluded that DCase-bJ13 has the best affinity with SAv, and therefore is the most promising peptide as a SAv affinity tag.

    中文摘要.........................................................................................................................I 英文摘要.........................................................................................................................II 目錄 ..................III 圖目錄 .VI 表目錄 IX 第一章 序論 1 第二章 文獻回顧 3 2-1 D型對巠基甘胺酸與DCase 3 2-1-1 D型胺基酸與D型對巠基甘胺酸(D-p-HPG) 3 2-1-2 N-carbamoyl-D-amino acid amidohydrolase (DCase) 5 2-2 生物感測器(Biosensor) 8 2-2-1 生物感測器原理 8 2-2-2 壓電石英晶體感測器 12 2-2-3壓電石英晶體微質量天平之應用 15 2-2-4 壓電晶體表面修飾技術與應用 19 2-2-4-1 蛋白質固定法 19 2-2-4-2 自排性單分子膜以及水膠塗覆 20 2-3 隨機胜肽組合庫(Random peptide library) 26 2-3-1隨機胜肽組合庫 26 2-3-2噬菌體胜肽組合庫 28 2-3-3鞭毛胜肽組合庫 31 2-3-4 其他胜肽表現系統 35 2-4 Streptavidin (SAv), biotin與親和標籤 38 2-4-1 SAv and biotin之作用力 38 2-4-2親和性標籤 41 2-4-2-1 Strep-Tag 41 2-4-2-2 SAv binding peptide-tag (SBP-tag) and nano-tag 44 第三章 實驗目的 46 第四章 實驗 47 4-1 實驗流程 47 4-2實驗材料 54 4-2-1菌株 54 4-2-2質體 54 4-2-3單股寡核苷酸 54 4-2-4酵素 55 4-2-5 DNA操作試液套件組 55 4-2-6蛋白質純化層析擔體 55 4-2-7標準分子量溶液 55 4-3實驗藥品 56 4-4實驗設備 57 4-5實驗步驟 59 4-5-1 DNA分析 59 4-5-1-1 pDAH2質體之純化 59 4-5-1-2載體之製備 60 4-5-1-3 dsDNA片段之製備與黏合 61 4-5-1-4 DNA片段黏合反應 61 4-5-1-5 質體轉入E. coli細胞 62 4-5-1-6 PCR篩菌 63 4-5-2 蛋白質分析 63 4-5-2-1 原生種與融合蛋白質之生產 63 4-5-2-2 原生及各融合蛋白質之純化 64 4-5-2-3 酵素活性分析 65 4-5-2-4 蛋白質濃度分析 66 4-5-2-5 SDS-PAGE蛋白質電泳 66 4-5-2-6 SAv凝膠吸附分析 67 4-5-3 SAv壓電晶體之製備 68 4-5-3-1 壓電晶體表面鍍金 68 4-5-3-2 自排性單分子膜修飾與胺基化 69 4-5-3-3 POD固定化與確認 69 4-5-3-4 SAv固定化 70 4-5-4注流式檢測 70 4-5-4-1 SAv壓電晶體與Biotin-BSA之親和分析 70 4-5-4-2 SAv 壓電晶體與融合酵素之親和分析 71 第五章 結果與討論 72 5-1 pDAH/aJ21、pDAH/bJ13、pDAH/hM8與pDAH/strepII質體建構與確認 72 5-2 融合酵素之純化與活性 76 5-2-1 融合酵素之純化 76 5-2-2 融合酵素之活性分析 77 5-3 SAv凝膠吸附之SDS-PAGE分析 82 5-3-1原生及各融合酵素與SAv凝膠吸附的確認 82 5-3-2吸附常數分析 82 5-4 POD晶片製備與確認 92 5-5 POD晶片之壓電晶體注流式檢測 94 5-6 以壓電晶體注流式檢測對各融合酵素之吸附分析 98 第六章 結論 113 參考文獻 114 附錄 121

    Barie, N., Rapp, M., Sigrist, H., and Ache, H. J. “Covalent photolinkermediated immobilization of an intermediate dextran layer to polymer-coated surfaces for biosensing applications,” Biosens. Bioelectron., 13, 855-860 (1998)

    Bunde, R. L., Jarvi, E. J., and Rosentreter, J. J., “Piezoelectric quartz crystal biosensors,” Talanta, 46, 1223-1236 (1998)

    Burritt, J. B., Bond, C. W., Doss, K. W., and Jesaitis A. J., “Review filamentous phage display of oligopeptide libraries,” Anal. Biochem., 238, 1-13 (1996)

    Caruso, F., Furlong, D. N., Niikura, K., and Okahata, Y., “In-situ measurement of DNA immobilization and hybridization using a 27 MHz quartz crystal microbalance,” Colloids Surf. B, Biointerfaces, 10, 199-204 (1998)

    Cass, A. E. G., Davis, G., Francis, G. D., and Hill, H. A. O., “Ferrocene-mediated enzyme electrode for amperometric determination of glucose,” Anal. Chem., 56, 667-671 (1984)

    Chang, H. C., Yang, C. C., and Yeh, T. M., “Detection of lipopolysaccharide binding peptides by the use of a lipopolysaccharide-coated piezoelectric crystal biosensor,” Anal. Chim. Acta, 340, 49-54 (1997)

    Clark, L. C. and Lyons C., “Electrode systems for continuous monitoring in cardiovascular surgery,” Ann. N. Y. Acad. Sci., 102, 29-45 (1962)

    Cooper, E., Wiggs, R., Hutt D. A., Parker L., Leggett G. J., and Parker T. L., “Rate of attachment of fibroblasts to self-assembled monolayers formed by the adsorption alkylthiols onto gold surfaces,” J. Mater. Chem., 7, 435-441 (1997)

    Devlin, J. J., Panganiban L. C., and Devlin P. E., “Random peptide libraries: a source
    of specific protein binding molecules,” Science, 249, 404-405 (1990)

    Diamandis, E. P. and Christopoulos, T. K., “The biotin-(strept)avidin system: principles and applications in biotechnology,” Clin. Chem., 37, 625-636 (1991)

    Enjalbal, C., Maux, D., Combarieu, R., Martinez, J., and Aubagnac, J. L., “Imaging combinatorial libraries by mass spectrometry: from peptide to organic-supported syntheses,” J. Comb. Chem., 5, 102-109 (2003)

    Finklea, H. O. “Self-assembled monolayers on electrodes,” Encyclopedia of ana. Chem., Robert A. Meyers., ed., John Wiley & Sons Ltd., Chichester, 1-26 (2000)

    Freitag, S., Trong, I. L., Klumb, L. A., Stayton, P. S., and Stenkamp, R. E., “ Structural studies of the streptavidin binding loop ,” Protein Sci., 6, 1157-1166 (1997)

    Fung, Y. S. and Wong, Y. Y., “Self-assembled monolayers as the coating in a quartz piezoelectric crystal immunosensor to detect salmonella in aqueous solution,” Anal. Chim., 73, 5302-5309 (2001)

    Furka, A., Sebestyen, F., Asgedom, M., and Dibo, G., “General method for rapid synthesis of multicomponent peptide mixtures,” Int. J. Pept. Protein Res., 37, 487-493 (1991)

    Gao, C., Mao, S., Kaufmann, G., Wirsching, P., Lerner, R. A., and Janda, K. D., “A method for the generation of combinatorial antibody libraries using pIX phage display,” Proc. Natl. Acad. Sci. USA, 99, 12612–12616 (2002)

    Geysen, H. M., Meloen, R. N., and Barteling, S. J., “Use of peptide synthesis to probe viral antigen for epitopes to a resolution of a single amino acid,” Proc. Natl. Acad. Sci. U.S.A., 81, 3998-4002 (1984)

    Giebel, L. B., Cass, R. T., Milligan, D. L., Young, D. C., Arze, R., and Johnson, C. R., “Screening of cyclic peptide phage libraries identifies ligands that bind streptavidin with high affinities,” Biochemistry, 34, 15430-15435 (1995)

    Gooding, J. J., and Hibbert, D. B., “The application of alkanethiol selfassembled monolayers to enzyme electrodes,” Trends Anal. Chem., 18, 525-533 (1999)

    Gryte, D. M., Ward, M. D., and Hu, W. S., “Real-time measurement of anchorage-
    dependent cell adhesion using a quartz crystal microbalance,” Biotechnol. Prog., 9, 105-108 (1993)

    Ho, C. K., Lindgren, E. R., Rawlinson, K. S., McGrath, L. K., and Wright, J. L., “Development of a surface acoustic wave sensor for in-situ monitoring of volatile organic compounds,” Sensors , 3, 236-247 (2003)

    Hook, F., Rodahl, M., Kasemo, B., and Brzezinski, P., “Structural changes in hemoglobin during adsorption to solid surfaces: Effects of pH, ionic strength, and ligand bindin,” Proc. Natl. Acad. Sci. USA, 95, 12271–12276 (1998)

    Horácek, J. and Skládal, P., “Improved direct piezoelectric biosensors operating in liquid solution for the competitive label-free immunoassay of 2,4-dichloro-
    phenoxyacetic acid,”Anal. Chim. Acta., 347, 43-50 (1997)

    Ikenaka, Y., Nanba, H., Yamada, Y., Yajima, K., Takano, M., and Takahashi, S., “Screening, characterization, and cloning of the gene for N-carbamoyl-D-amino acid amidohydrolase from thermotolerant soil bacteria,” Biosci. Biotechnol. Biochem., 62, 882-886 (1998)

    Invitrogen, Co., USA. “pFlitrx display vector protocol,” (2002)

    Kanazawa, K. K. and Gordan, J. G., “The oscillation frequency of a quartz resonator in contact with a liquid,” Anal. Chim. Acta, 175, 99-105 (1985)

    Kikuchi, M. and Shiratori, S., “Quartz crystal microbalance (QCM) sensor for CH3SH gas by using polyelectrolyte-coated sol–gel film,” Sens. Actuators. B, Chem., 108, 564-571 (2005)

    Lam, K. S., Salmon, S. E., Hersh, E. M., Hruby, V. J., Kazmierski, W. M., and Knapp, R. J. “A new type of synthetic peptide library for identifying ligand-binding activity,” Nature, 354, 82-84 (1991)
    Lamla, T., and Erdmann, V. A., “Searching sequence space for high-affinity binding peptides using ribosome display,” J. Mol. Biol., 329, 381-388 (2003)

    Lin, C. Y., Tai, D. F., and Wu, T. Z., “Discrimination of peptides by using a molecularly imprinted piezoelectric biosensor,” Chem. Eur. J., 9, 5107-5110 (2003)

    Lin, S., Lu, C. C., Chien, H. F., and Hsu, S. M., “An on-line quantitative immunoassay system based on a quartz crystal microbalance,” J. Immunol. Methods, 239, 121-124 (2000)

    Liu, T., Tang, J., and Jiang L., “Sensitivity enhancement of DNA sensors by nanogold
    surface modification,” Biochem. Biophys. Res. Commun., 295, 14-16 (2002)

    Liu, Y., Yu, X., Zhao, R., Shangguan, D. H., Bo, Z., and Liu, G., “Real time kinetic analysis of the interaction between immunoglobulin G and histidine using quartz crystal microbalance biosensor in solution,” Biosens. Bioelectron., 18, 1419-1427 (2003a)

    Liu, Y., Yu, X., Zhao, R., Shangguan, D., Bo, Z., and Liu, G., “Quartz crystal biosensor for real-time monitoring of molecular recognition between protein and small molecular medicinal agents,” Biosens. Bioelectron., 19, 9-19 (2003b)

    Lamla, T. and Erdmann, V. A., “The nano-tag, a streptavidin-binding peptide for the purication and detection of recombinant proteins,” Protein Expr. Purif., 33, 39-47 (2004)

    Lofas, S. and Johnsonn, B., “A novel hydrogel matrix on gold surfaces in surface plasmon resonance sensors for fast and efficient covalent immobilization of ligands,” J. Chem. Soc. Chem. Commun., 1526-1528 (1990)

    Louwrier, A. and Knowles, C. J., “The purification and characterization of a novel D-(-)-specific carbamoylase enzyme from an Agrobacterium sp.,” Enzyme Microb. Technol., 19, 562-571 (1996)

    Louwrier, A. and Knowles, C. J., “The aim of industrial enzymic amoxicillin production: characterization of a novel carbamoylase enzyme in the form of a crude, cell-free extract,” Biotechnol. Appl. Biochem., 25, 143-149 (1997)

    Lu, Z., Murray, K. S., Cleave, V. V., Lavallie, E. R., Stahl, M. L., and Mccoy, J. M., “Experssion of thioredoxin random peptide libraries on the Escherichia coli cell surface as functional fusions to flagellin: A system designed for exploring protein-
    Protein interaction,” Bio/Technol., 13, 366-372 (1995)

    Mannelli, I., Minunnia, M., Tombellia, S., Wang, R., Spiritia, M. M., and Mascinia, M., “Direct immobilisation of DNA probes for the development of affinity biosensors,” Bioelectrochemistry, 66, 129-138 (2005)

    McCafferty, J., Griffiths, A. D., Winter, G., and Chiswell, D. J. “Phage antibodies:filamentous phage displaying antibody variable domains,” Nature, 348, 552-554 (1990)

    Noren, C. J., “Phage display: affinity selection linked to genetic formation,” The NEB Transcript, 8, 1-5 (1995)

    Moller, A., Syldatk, C., Schulze, M., and Wagner, F., “Stereo- and substrate-
    specificity of a D-hydantoinase and a D-N-carbamyl-amino acid amidohydrolase of Arthrobacter crystallopoietes AM 2,” Enzyme Microb. Technol., 10, 618-625 (1988)

    Nakai, T., Hasegawa, T., Yamashita, E., Yamamoto, M., Kumasaka, T., Ueki, T., Nanba, H., Ikenaka, Y., Takahashi, S., Sato, M., and Tsukihara, T., “Crystal structure of N-carbamyl-D-amino acid amidohydrolase with a novel catalytic framework common to amidohydrolases,” Structure, 8, 729-739 (2000)

    Ogawa, J., Shimizu, S., and Yamada, H., “N-carbamyl-D-amino acid amidohydrolase from Comamonas sp. E222c purification and characterization,” Eur. J. Biochem., 212, 685-691 (1993)

    Ogawa, J., Chung, C., Hida, S., Yamada, H., and Shimizu, S., “Thermostable N-
    carbamyl-D-amino acid amidohydrolase : screeninng, purification and charac-
    terization,” J. Biotechnol., 38, 11-19 (1994)

    Olivieri, R., Fascetti, E., Angelini, L., and Degen , L., “Microbial transformation of racemic hydantoins to D-amino acids,”. Biotechnol. Bioeng., 23, 2173-2183 (1981)

    O’Sullivan, C. K. and Guilbault, G. G., “Commercial quartz crystal microbalances- theory and applications,” Biosens. Bioelectron., 14, 663-670 (1999)

    Park, J., Kurosawa, S., Aizawa, H., Wakida, S., Yamada, S., and Ishihara, K., “Comparison of stabilizing effect of stabilizers for immobilized antibodies on QCM immunosensors,” Sens. Actuators. B, Chem., 91, 158-162 (2003)

    Parmley, S. F. and Smith, G. P. “Antibody-selectable filamentous fd phage vectors: affinity purification of target genes,” Gene, 73, 305-318 (1988)

    Plomer, M., Guilbault, G. G., and Hock, B., “Development of a piezoelectric
    immunosensor for the detection of enterbacteria,” Enzyme Microb. Technol., 14, 230-235 (1992)

    Rickert, J., Brecht, A., and Gopel, W., “Quartz crystal microbalances for quantitative biosensing and characterizing protein multilayers," Biosens. Bioelectron., 12, 567-575 (1997)

    Sano, T., Vajda, S., and Cantor, C. R., “Genetic engineering of streptavidin, a versatile affinity tag,” J. Chroma. B, Biomed. Appl., 715, 85-91 (1998)

    Sauerbrey, G. A., “Use a quartz vibrator from weight thin films on a microbalance” Z. Physik., 155, 206-210 (1959)

    Schaffitzel, C., Hanes, J., Jermutus, L., and Pluckthun A., “Ribosome display: an in vitro method for selection and evolution of antibodies from libraries,” J. Immunol. Methods, 231, 119-135 (1999)

    Schmidt, T. G. M., and Skerra, A., “The random peptide library-assisted engineering of a C-terminal affinity peptide, useful for detection and purification of a functional Ig Fv fragment,” Protein Eng., 6, 109-122 (1993)

    Schmidt, T. G. M., Koepke, J., Frank, R., and Skerra, A., “Molecular interaction between the strep-tag affinity peptide and its cognate target, streptavidin,” J. Mol. Biol., 255, 753-766 (1996)

    Shimohigoshi, M. and Karube, I., “Development of uric acid and oxalic sensors using a bio-thermochip,” Sens. Actuators. B, Chem., 30, 17-21 (1996)

    Skerra, A. and Schmidt, T. G. M., “Applications of a peptide ligand for streptavidin: the Strep-tag,” Biomol. Eng., 16, 79-86 (1999)

    Smith, G. P., “Filamentous fuson phage: Novel expression vectors that display cloned
    antigens on the virion surface,” Science, 228, 1315-1317 (1985)

    Su, X. and Li, Y., “A self-assembled monolayer-based piezoelectric immunosensor for rapid detection of Escherichia coli O157:H7,” Biosens. Bioelectron., 19, 563-574 (2004)

    Suri, C. R., Raje, M., and Mishra, G. C., “Determination of immunoglobulin M concentration by piezoelectric crystal immunobiosensor coated with Protamine,” Biosens. Bioelectron., 9, 325-332 (1994)

    Tajima, I., Asami, O., and Sugiura, E., “Monitor of antibodies in human saliva using a piezoelectric quartz crystal biosensor,” Anal. Chim. Acta, 365, 147-149 (1998)

    Takahashi, S., Ohsshi, T., Kii, Y., Kumagai, H., and Yamada, H., “Microbial transformation of hydantoins to N-carbamyl-D-amino acids,” J. Fermenl. Technol., 57, 328-332 (1979)

    Updike, S. J. and Hicks, G. P., “The enzyme electrode,” Nature, 214, 986-988 (1967)

    Voss, S. and Skerra, A., “Mutagenesis of a flexible loop in Streptavidin leads to higher affinity for the Strep-tag II peptide and improved performance in recombinant protein purification,” Protein eng., 10, 975-982 (1997)

    Wilchek, M. and Bayer, E. A., “Foreword and introduction to the book (strept)avidin–
    biotin system,” Biomol. Eng., 16, 1-4(1999)

    Wilson, D. S., Keefe, A. D., and Szostak, J. W., “The use of mRNA display to select high-affinity protein-binding peptides,” Proc. Natl. Acad. Sci. USA, 98, 3750-3755 (2001)

    Yagasaki, M. and Ozaki, A., “Industrial biotransformations for the production of D-amino acids,” J. Mol. Catal., B. Enzym., 4, 1-11 (1998)

    Zhou, T., Marx, K. A., Warren, M., Schulze, H., and Braunhut, S. J., “The Quartz crystal microbalance as a continuous monitoring tool for the study of endothelial cell surface attachment and growth,” Biotechnol. Prog., 16, 268-277 (2000)

    林裕勝 “葡聚醣於壓電免疫感測探針之應用” 台灣科技大學化學工程技術研究所碩士論文(1997)

    林美玲 “自排性單分子膜於親水性壓電免疫感測探針製備之應用” 台灣科技大學化學工程技術研究所碩士論文(1998)

    陳慎泓 “金屬螯合壓電晶體感測晶片之研製” 台灣科技大學化學工程技術研究所碩士論文(1999)

    劉瑞雯 “N-carbamoyl-D-amino acid amidohydrolase基因之選殖、生產表現與純化,” 台灣科技大學化學工程技術研究所碩士論文(1999)

    王維聰 “水膠塗覆法製備金屬螯和壓電生物感測器” 台灣科技大學化學工程技術研究所碩士論文(2001)

    何晟偉 “親和標籤對N-carbamoyl-D-amino acid amidohydrolase之生產、純化與活性影響之探討,” 台灣科技大學化學工程技術研究所碩士論文(2001)

    周佳瑩 “以Saccharomyces cerevisiae生產N-carbamoyl-D-amino acid amidohydrolase及其純化,” 台灣科技大學化學工程技術研究所碩士論文(2001)

    林正偉 “壓電生物感測器篩選鞭毛表現peptide組合庫之可行性研究” 台灣科技大學化學工程技術研究所碩士論文(2001)

    黃遵韓 “具Streptavidin親和活性胜肽之篩選研究” 台灣科技大學化學工程技術研究所碩士論文(2002a)

    謝銘隆、吳天鳴、王宜君、朱延和“組合化學在醫藥開發上的應用”科學發展
    353:56-61 (2002)

    黃如嬅 “Cys→Ser定點突變對於N-carbamoyl-D-amino acid amidohydrolase之活性與結構穩定性影響之探討,” 台灣科技大學化學工程技術研究所碩士論文(2002b)

    劉世隆 “以位置篩選法合成組合化學胜肽庫應用於氣體辨識材料之研究” 東華大學生物技術研究所碩士論文 (2002)

    陸季宏 “以定點隨機突變增進N-carbamoyl-D-amino acid amidohydrolase之穩定性,” 台灣科技大學化學工程技術研究所碩士論文(2003)

    王一統 “以定點突變技術探討雙硫鍵的形成對N-carbamoyl-D-amino acid amidohydrolase之活性及穩定性之影響,” 台灣科技大學化學工程技術研究所碩士論文(2003)

    黃育生 “以SOEing定點隨機突變法改善N-Carbamoyl-D-amino acid amidohydrolase之活性與穩定性,” 台灣科技大學化學工程技術研究所碩士論文(2004)

    蔡瑞明 “奈米金與螢光呈色法對Streptavidin親和活性胜肽篩選之應用比較” 台灣科技大學化學工程技術研究所碩士論文(2004)

    蘇毓勛 “壓電細胞生物感測系統之研發及其藥物檢測應用” 台灣科技大學化學工程技術研究所碩士論文(2004)

    http://www.biochem.unizh.ch /plueckthun

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)
    全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
    QR CODE