簡易檢索 / 詳目顯示

研究生: 謝育卿
Yu-ching Hsieh
論文名稱: 熱處理對N-Carbamoyl-D-amino acid amidohydrolase及其突變酵素之特性與結構影響之分析
The structural and characteristic analyses of heat treated N-Carbamoyl-D-amino acid amidohydrolase and its mutants
指導教授: 陳秀美
Hsiu-mei Chen
口試委員: 李振綱
Cheng-kang Lee
鄭國忠
Kuo-chung Cheng
學位類別: 碩士
Master
系所名稱: 工程學院 - 化學工程系
Department of Chemical Engineering
論文出版年: 2006
畢業學年度: 94
語文別: 中文
論文頁數: 112
中文關鍵詞: DCase酵素活性穩定性動態雷射光散射儀圓極偏光光譜儀
外文關鍵詞: DCase enzyme, activity, stability, circular dichroism, dynamic light scattering
相關次數: 點閱:194下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本文主要針對先前以SOEing定點隨機突變法,所挑選出C端帶有6×His tag之N-carbamoyl-D-amino acid amidohydrolase (DCaseH)突變酵素,其酵素活性或熱穩定性較原生種酵素稍佳的數個突變酵素進行分析,分別為C193L/N197S/A273V、C250G、M239L、M239K及M239C。為了探討這幾個突變酵素於熱失活下的非摺疊狀態,分別添加不同濃度且不同種類的還原劑,在不同溫度下進行熱反應,之後並利用HPLC進行活性分析,以求得最適溫度及條件來改善酵素的熱穩定性。而後以動態雷射光散射儀測量酵素經熱處理後因失活所造成的粒徑變化與粒徑分佈,並配合圓極偏光光譜儀了解酵素結構因熱處理被破壞所造成的變化。

    活性分析結果顯示大部分的酵素在反應溫度42℃、添加5 mM DTT還原劑時會表現出最佳之比活性,而最適之TCEP濃度則隨不同的突變酵素有所變化。綜合活性、圓極偏光光譜及動態雷射光散射分析每一各會熱失活之酵素之結果,幾乎大部分的DCaseH酵素在40℃熱處理之數十秒內,其蛋白質二級結構會快速的形成部份非折疊態(20 ~ 30%),緊接著開始有凝聚和隨之的聚集現象發生並導致酵素失活。在這些DCaseH酵素中,以C250G添加5 mM DTT具有最佳之比活性,而以C193L/N197S/A273V不含還原劑時及M239L添加2 mM TCEP時具有最高之熱失活活化能Ea,所以表現最為穩定。


    We have previously screened several mutant 6×His-tagged N-carbamoyl-D-amino acid amidohydrolase (DCaseH), C193L/N197S/A273V, C250G, M239L, M239K, and M239C, with better activity and thermostability than the wild-type one using SOEing site-directed mutagenesis. This follow-on study focused on the thermostability and the inactivation mechanisms of wild-type and mutant DCaseHs under different types and concentrations of reducing agents. The activity assays showed most enzymes displayed the best activity at 42℃ and 5 mM DTT and the optimal TCEP concentrations were various for different enzymes. The combination study of the activity, circular dichroism, and dynamic light scattering analyses on each thermoinactivated enzyme concluded that nearly all DCaseHs rapidly underwent a partial unfolding (20~30%) of the secondary structure within the first ten seconds of heat treatment and the subsequent flocculation and then aggregation resulted in activity loss. Among the enzymes, C250G displayed the best activity, while C193L/N197S/A273V without adding reductant and M239L with adding 2 mM TCEP were the most thermostable.

    目錄 中文摘要………………………………………………………………………... I 目錄………………………………………………………………………........... II 表目錄………………………………………………………………………....... V 圖目錄………………………………………………………………………....... VI 第一章 緒論……………………………………………………………………. 1 第二章 文獻回顧………………………………………………………………. 3 2-1 蛋白質……………………………………………………………………... 3 2-1-1 蛋白質的結構……………………………………………………… 3 2-1-2 蛋白質的穩定性…………………………………………………… 4 2-2 D型胺基酸與D型羥基甘胺酸(D-p-HPG) ……………………………….. 5 2-2-1 D型胺基酸………………………………………………………….. 5 2-2-2 D型羥基甘胺酸(D-p-HPG) ………………………………………... 6 2-3 N-Carbamoyl-D-amino acid amidohydrolase (DCase) …………………….. 6 2-3-1 DCase的原生種來源及特性………………………………………. 6 2-3-2 DCase的隨機突變研究…………………………………………….. 11 2-3-3 DCase的定點突變研究(Cys與Met殘基) ………………………… 14 2-3-4 DCase的晶體結構與單體間作用力……………………………….. 17 2-3-5 DCase的活性區域與胺基酸水解反應機制……………………….. 18 2-4 還原劑對酵素穩定性之影響……………………………………………... 29 2-5 固定化金屬層析法(IMAC) ………………………………………………. 30 2-6 蛋白質分析方法…………………………………………………………... 30 2-6-1 SDS-PAGE電泳分析………………………………………………. 31 2-6-2 Native gel電泳分析………………………………………………... 31 2-6-3 圓極偏光光譜(circular dichroism, CD) …………………………... 31 2-6-4 動態雷射光散射(dynamic light scattering, DLS) ………………… 35 第三章 實驗目的………………………………………………………………. 41 第四章 實驗……………………………………………………………………. 42 4-1 實驗流程……………………………………………………...…………… 42 4-1-1 原生種及各突變種DCaseH蛋白質之生產、純化及特性分析… 42 4-2 實驗材料…………………………..………………………………………. 42 4-2-1 菌株………………………………………………………………… 42 4-2-2 質體………..………………………………………………………. 42 4-2-3 蛋白質純化層析擔體、純化管柱及透析膜……………………….. 43 4-2-4 標準分子量溶液及標準蛋白質濃度溶液………...………………. 43 4-2-5 酵素…...……………………………………………………………. 43 4-2-6 其他………………………………………………………………… 43 4-3 實驗藥品…………………………..………………………………………. 45 4-4 實驗設備……………………………………………………...…………… 46 4-5 實驗步驟…………………………...……………………………………… 47 4-5-1 酵素之生產………………………………………………………… 47 4-5-1-1 DCaseH原生種及突變種酵素於E. coli BL21(DE3)之生產... 47 4-5-1-2 DCaseH原生種及突變種酵素之純化………………………... 48 4-5-2 DCaseH原生種及突變種酵素之活性與特性分析……………….. 48 4-5-2-1 DCaseH之活性單位 (U) ……………………………………... 48 4-5-2-2 D-p-HPG及N-carbamoyl-D-p-HPG之HPLC分析條件……… 48 4-5-2-3 各純化DCaseH突變酵素的活性分析……………..……….... 49 4-5-2-4 各純化DCaseH突變酵素之熱穩定性探討………………...... 49 4-5-2-5 蛋白質之濃度分析……………………...…………………….. 49 4-5-2-6 聚丙烯醯胺膠凝體蛋白質電泳( SDS-PAGE ) (12.5 %)…….. 50 4-5-2-7 SDS-PAGE電泳膠片之顯色………………………………….. 51 4-5-2-8 Native discontinuous gel蛋白質電泳…………………………. 51 4-5-2-9 圓極偏光光譜分析(CD)...………………..…………………... 52 4-5-2-10 動態雷射光散射儀(DLS)...………………………..………... 53 第五章 結果與討論……………………………………………………………. 54 5-1 各突變種DCaseH酵素之特性分析………………………………………. 54 5-1-1 DCaseH突變區域之分析…………………………………………... 54 5-1-2 各突變種DCaseH酵素之生產與純化……………..……………... 54 5-1-3 原生種與各突變種DCaseH酵素之原始構形…………...……….. 55 5-2 各突變種DCaseH酵素之活性分析……..……………………………….. 55 5-2-1 原生種與各突變種DCaseH酵素之最適還原劑濃度及最適溫度活性分析…………………………………………………………... 62 5-3 原生種與各突變種DCaseH酵素之熱穩定性分析………………………. 63 5-3-1 原生種與各突變種DCaseH酵素之最適還原劑濃度熱穩定性分析…………………………………………………………………... 63 5-3-2 原生種與各突變種DCaseH酵素之熱失活動力分析……………. 67 5-4 各突變種DCaseH酵素之結構分析………………... ………………......... 68 5-4-1 圓極偏光光譜(CD)分析各突變種DCaseH酵素………………..... 68 5-4-2 動態雷射光光譜(DLS)分析各突變種DCaseH酵素……………... 80 第六章 結論…………. …………. …………. …………. …………. ………... 101 參考文獻…………. …………. …………. …………. …………. …………. ... 103 附錄…………. …………. …………. …………. …………. …………. ……... 107

    蘇惠玲,“Agrobacterium radiobacter發酵生產N-氨甲醯D-胺基酸水解酵素及其特性研究”,台灣科技大學化學工程技術研究所碩士論文,1996

    劉瑞雯,“N-carbamoyl-D-amino acid amidohydrolase基因之選殖、生產表現與純化”,台灣科技大學化學工程技術研究所碩士論文,1999

    何晟偉,“親和標籤對N-carbamoyl-D-amino acid amidohydrolase之生產、純化與活性影響之探討”,台灣科技大學化學工程技術研究所碩士論文,2001

    黃如嬅,“Cys→Ser定點突變對於N-carbamoyl-D-amino acid amidohydrolase之活性與結構穩定性影響之探討”,台灣科技大學化學工程技術研究所碩士論文,2002

    王永裕,“非離子型界劑之微胞行為探討”,台灣科技大學化學工程技術研究所碩士論文,2002

    王一統,“以定點突變技術探討雙硫鍵的形成對N-carbamoyl-D-amino acid amidohydrolase之活性及穩定性之影響”,台灣科技大學化學工程技術研究所碩士論文,2003

    王子瑜,曹恆光,“布朗運動、郎之萬方程式、與布朗動力學”,物理雙月刊,27(3),456~460,2005

    黃育生,“以SOEing定點隨機突變法改善N-carbamoyl-D-amino acid amidohydrolase之活性與穩定性”,台灣科技大學化學工程技術研究所碩士論文,
    2004

    Ausubel, F. M., Brent, R., Kingston, R. E., Moore, D. D., Seidman, J. G., Smith, J. A., Struhl, K., Albright, L. M., Coen, D. M., Varki, A., and Chanda, V. B., “Part II: Electrophoretic separation of proteins”, in: Current protocols in molecular biology, volume 2, John Wiley & Sons, Inc., New York, 10-13, 2000

    Chen, C. Y., Chiu, W. C., Liu, J. S., Hsu, W. H., and Wang, W. C., “Structural basis for catalysis and substrate specificity of Agrobacterium radiobacter N-carbamoyl-D-
    amino acid amidohydrolase”, J. Biol. Chem., 278, 26194~26201, 2003a

    Chen, H. M., Ho, C. W., Liu, J. W., Lin, K. Y., Wang, Y. T., Lu, C. H., and Liu, H. L., “ Production, IMAC purification, and molecular modeling of N-carbamoyl-D-amino acid amidohydrolase C-terminally fused with a six-His peptide”, Biotechnol. Prog., 19, 864~873, 2003b

    Chien, H.C., Hsu, C. L., Hu, H. Y., Wang, W. C., and Hsu, W. H., “Enhancing oxidative resistance of Agrobacterium radiobacter N-carbamoyl-D-amino acid amidohydrolase by engineering solvent-accessible methionine residues”, Biochem. Biophys. Res. Commun., 297, 282~287, 2002
    Chiu, W. C., You, J. Y., Liu, J. S., Hsu, S. K., Hsu, W. H., Shih, C. H., Hwang, J. K., and Wang, W. C., “Structure-stability-activity relationship in covalently cross-linked N-carbamoyl-D-amino acid amidohydrolase and N-acylamino acid racemase”, J. Mol. Biol. 359, 741~753, 2006

    Copeland, R. A., “Methods of protein analysis”, Chapman and Hall, New York, 1994

    Gast, K., Damaschun, G., Misselwitz, R., and Zirwer, D., “Application of dynamic light scattering to studies of protein folding kinetics”, Eur. Biophys. J., 21, 357~362, 1992

    Grifantini, R., Pratesi, G., and Grandi, G., “Topological mapping of the cysteine residues of N-carbamoyl-D-amino acid amidohydrolase and their role in enzymatic activity”, J. Biol. Chem., 271, 9326~9331, 1996

    Hermanson, G. T., “Part I, Chapter 1.4.1: Introduction of sulfhydryl residues (thiolation)”, in: Bioconjugate techniques, Academic Press, Inc., California, 76~87, 1996

    Ikenaka, Y., Nanba, H., Yamada, Y., Yajima, K., Takano, M., and Takahashi, S., “Screening, Characteration, and cloning of the gene for N-carbamoyl-D-amino acid amidohydrolase from thermotolerant soil bacteria”, Biosci. Biotechnol. Biochem., 62, 882~886, 1998a

    Ikenaka, Y., Nanba, H., Yamada, Y., Yajima, K., Takano, M., and Takahashi, S., “Increase in thermostability of N-carbamoyl-D-amino acid amidohydrolase on amino acid substitutions”, Biosci. Biotechnol. Biochem., 62, 1668~1671, 1998b

    Ikenaka, Y., Nanba, H., Yajima, K., Yamada Y., Takano, M., and Takahashi, S., “Realationship between an increase in thermostability and amino acid substitutions in N-carbamoyl-D-amino acid amidohydrolase”, Biosci. Biotechnol. Biochem., 62, 1672~1675, 1998c

    Ikenaka, Y., Nanba, H., Yajima, K., Yamada Y., Takano, M., Takahashi, S., “Thermostability reinforcement through a combination of Thermostability-related mutations of N-carbamoyl-D-amino acid amidohydrolase”, Biosci. Biotechnol. Biochem., 63, 91-95, 1999

    Kim, Y. H., Berry. A. H., Spencer. D. S., and Stites, W. E., “Comparing the effect on protein stability of methionine oxidation versus mutagenesis: steps toward engineering oxidative resistance in proteins”, Protein Eng., 14, 343~347, 2001

    Lightner, D. A. and Gurst, J. E., “Organic conformational analysis and stereochemistry from circular dichroism spectroscopy”, Wiely, VCH, New York, 2000

    Louwrier, A. and Knowles, C. J., “The purification and characterization of a novel D-(-)-specific carbamoylase enzyme from an Agrobacterium sp.”, Enzyme Micro. Technol., 19, 562~571, 1996

    Louwrier, A., and Knowles, C. J., “The aim of industrial enzymic amoxicillin production: characterization of a novel carbamoylase enzyme in the form of a crude, cell-free extract”, Biotechnol. Appl. Biochem., 25, 143~149, 1997

    Malvern Instruments Ltd., “Zetasizer nano series user manual”, United Kingdom, 2003

    Mckee, T. and Mckee J.R., “Chapter five: Peptides and Proteins”, in: Biochemistry, second edition, McGraw-Hill, Boston, 79~117, 1999

    Moller, A., Syldayk, C., Schulze, M., and Wagner, F., “Stereo-and substrate-specificity of a D-N-carbamyl-amino acid amidohydrolase of Arthrobcter crystallopoietes AM2”, Enzyme Microb. Technol., 10, 618~625, 1998

    Nakai, T., Hasegawa, T., Yamashita, E., Yamamoto, M., Kumasaka, T., Ueki, T., Nanba, H., Ikenaka, Y., Takahashi, S., Sato, M., and Tsukihara, T., “Crystal structure of N-carbamoyl-D-amino acid amidohydrolase with a novel catalytic framework common to amidohydrolases”, Structure, 8, 729~739, 2000

    Nosih, Y. and Sekiguchi, T., “Protein stability and stabilization through protein engineering”, Ellis Horwood, London, 1991

    Ó Fágáin, C., “Understanding and increasing protein stability”, Biochim. Biophys. Acta, 1252, 1~14, 1995

    Ogawa, J., Shimizu, S., and Yamada, H., “N-carbamoyl-D-amino acid amidohydrolase from Comamonas sp. E222c purification and characterization”, Eur. J. Biochem., 212, 685~691, 1993

    Ogawa, J., Chung, C., Hida, S., Yamada, H., and Shimizu, S., “Thermostable N-carbamoyl-D-amino acid amidohydrolase: screening, purification and characterization”, J. Biotechnol., 38, 11~19, 1994

    Oh, K. H., Nam, S. H., and Kim, H. S., “Improvement of oxidative and thermostability of N-carbamoyl-D-amino acid amidohydrolase by directed Evolution”, Protein Eng., 15, 689~695, 2002a

    Oh, K. H., Nam, S. H., and Kim, H. S., “Directed evolution of N-carbamoyl-D-amino acid amidohydrolase for simultaneous improvement of oxidative and thermal Stability”, Biotech. Prog., 18, 413~417,2002b

    Olivieri, R., Fascetti, E., Angelini, L., and Degen , L., “Microbial transformation of racemic hydantoins to D-amnio acids”, Biotechnol. Bioeng., 23, 2173~2183, 1981

    Porath, J.,Carlsson, J., Olsson, I., and Belfrage, G., “Metal chelate affinity chromatography, a new approach to protein fractionation”, Nature, 258, 598~599, 1975

    Rodger, A. and Norden, B., “Circular dichroism and linear dichroism”, Oxford University Press, New York, 1997
    Sareen, D., Sharma, R., Nandanwar, H. S., and Vohra, R. M., “Two-step purification of D(-)-specific carbamoylase from Agrobacterium tumefaciens AM 10”, Protein Expr. Purif., 21, 170~175, 2001

    Takahashi, S., Ohsshi, T., Kii, Y., Kumagai. H., and Yamada, H., “Microbial transformation of hydantoins of N-carbamoyl-D-amino acids”, J. Fermenl. Technol., 57, 328~332, 1979

    Wang, W. C., Hsu, W. H., Chien, F. T., and Chen, C. Y., “Crystal structure and site-directed mutagenesis studies of N-carbamoyl-D-amino acid amidohydrolase from Agrobacterium radiobacter reveals a homotetramer and insight into a catalytic cleft”, J. Mol. Biol., 306, 251~261, 2001

    Yagasaki, M. and Ozaki, A., “Industrial biotransformations for production of D-amino acids”, J. Mol. Catal., B. Enzym., 4, 1~11, 1998

    Yip, T. T., Nakagawa, Y., and Porath, J., “Evalution of interaction of peptides with Cu(II), Ni(II) and Zn(II) by performance immobilized metal ion affinity chromatography”, J. Anal. Biochem., 183, 159~171, 1989

    Yokozeki, K. and Kubota, K., “Mechanism of asymmetric production of D-amino acids from the corresponding hydantoins by Pseudomonas sp.”, Agric. Biol. Chem., 51, 721~728, 1987

    無法下載圖示 全文公開日期 2011/07/28 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)
    全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
    QR CODE