簡易檢索 / 詳目顯示

研究生: 張正欣
Cheng-hsin Chang
論文名稱: 高效率視訊濃縮技術
Efficient Artifact-Free Video Synopsis
指導教授: 郭景明
Jing-ming Guo
口試委員: 王乃堅
Nai-jian Wang
丁建均
Jian-jiun Ding
謝君偉
Jun-wei Hsieh
方劭云
Shao-yun Fang
陳鴻興
Hung-shing Chen
學位類別: 碩士
Master
系所名稱: 電資學院 - 電機工程系
Department of Electrical Engineering
論文出版年: 2014
畢業學年度: 102
語文別: 中文
論文頁數: 143
中文關鍵詞: 背景濾除視訊濃縮視頻摘要物件追蹤
外文關鍵詞: background subtraction, video synopsis, video condensation, video summarization, object tracking
相關次數: 點閱:159下載:10
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 視訊濃縮(video synopsis)或稱視頻摘要(video summarization)技術主要的用途為去除長時間視訊中空間域(spatial domain)以及時間域(temporal domain)的冗餘資訊並提供濃縮摘要視訊,藉由改變原始視訊中物件的時間空間關聯性來達成此一目的。現今存在的視訊濃縮演算法皆有一前提,假設所有物件串列(同一物件不同時間的集合)皆是獨立的並且可以從原始影片中完美的取出,可是此一前提在現實生活中是不可發生的,因為目前尚無物件追蹤演算法保證能克服強烈的光影變化或是物件重疊所導致的追蹤失敗,另外,現今的濃縮視訊演算法所使用到的能量最小化演算法有著高計算複雜度的缺點,進而影響到此技術的實用性。
    有鑑於此,本論文針對以上缺點提出了高效率無失真視訊濃縮技術,優點如下 (1) 提出了動態邊緣調整演算法,克服多層式高速背景濾除技術中所會造成的物件邊緣破損或破洞等問題。(2) 視訊濃縮整體演算法的處理速度超過即時視訊處理要求的數倍,因此演算法可以達到同時多路並行處理。(3) 對於視訊濃縮的應用上克服了前置技術(背景濾除、物件追蹤)所造成的問題,在不以速度為代價的前提下取得自然流暢(non-artifacts)的濃縮視訊。(4) 提出了基於相關性分群與機率權重函數的視訊濃縮演算法,克服前人採用能量最佳化所造成的效率低落問題。
    最後實驗結果也顯示出本論文所提出的高效率視訊濃縮演算法除了可以達到即時多路的處理外,其產生的濃縮視訊可以克服物件追蹤失敗在濃縮視訊中所產生的閃爍現象(blink effect)與鬼影現象(ghost effect)。


    Video synopsis is utilized to provide a condensed video without spatial and temporal redundancies, while maintaining all the activities in the original video. Existing video synopsis methods presume that the object tubes (three dimension space time volume) are perfectly retrieved from the original video, yet it is not the case in practical applications due to the object detection/tracking failure or object collision. Another problem is the energy minimization based method often suffers from heavily computational cost, which thus prolongs the processing time. In this thesis, a new video synopsis scheme is proposed to solve the above issues.
    The main contributions of this study are as follows: 1) A highly efficient background subtraction scheme with dynamic edge thresholding is proposed to provide an artifact-free video synopsis result, and preserve most of the non-specific objects; (2) the processing speed of the overall video synopsis is even faster than real-time requirement to enable the multi-channel scenario; (3) overcome the problems induced by the preprocessing such as background subtraction and object tracking, and create fluent synopsis video without decreasing processing speed, and (4) overcome the energy minimization problem in former works with the object correlation clustering and properity weighting function. As documented in the experimental results, the proposed scheme provides promising performance, and can be a very competitive candidate in the practical video synopsis application.

    中文摘要 I Abstract II 誌謝 III 目錄 IV 圖表索引 VI 第一章 緒論 1 1.1 研究背景與動機 1 1.2 系統流程 2 1.3 論文架構 4 第二章 文獻探討 5 2.1 前言 5 2.2 視訊濃縮所遭遇之問題 6 2.3 視訊濃縮相關技術介紹 9 2.4 多層式碼簿模型背景濾除 (Fast Background Subtraction Based on a Multilayer Codebook Model for Moving Object Detection, MCB) 29 2.4.1 多層式背景模型的建立 (Multi-layer Background Codebook Model Construction) 30 2.4.2 多層式背景濾除 (Multi-layer Background Codebook Model Subtruction) 36 2.4.3 像素層更新機制 (Extra Pixel-based Codebook Model Update Mechanism) 39 2.4.4 像素層背景濾除與色彩模型分類 (Pixel-based Background Codebook Model Subtruction and color model classification) 40 2.4.5 偽前景濾除模型 (Fake Foreground Removal Model, FFRM) 43 第三章 高效率視訊濃縮技術 47 3.1 系統簡介 47 3.2 連通物件標籤 (Two Pass Connected-component Labeling) 49 3.3 動態邊緣調整之多層式高速背景濾除(Dynamic edge thresholding of Multi-layer Codebook Model) 54 3.4 基於多層式背景濾除架構下之物件追蹤 58 3.5 物件串列分析(Moving Object Tube Analysis) 61 3.6 視訊濃縮(Video Synopsis) 65 3.6.1 物件串列的分群 68 3.7 獨立物件串列時間位移函數M(φ)計算 71 3.8 非獨立物件串列時間位移函數M(φ)計算 72 3.9 濃縮視訊製作與重疊區域透明化處理(Overlapped Area Transparent Process) 83 第四章 實驗結果 87 4.1 背景濾除演算法評估 87 4.1.1 測試環境及測試樣本 89 4.2 動態邊緣臨界值調整演算法測試結果 91 4.3 視訊濃縮測試 108 4.3.1 測試樣本介紹 108 4.3.2 物件串列分析實驗結果 110 4.3.3 濃縮視訊演算法實驗結果 115 第五章 結論與未來展望 125 參考文獻 127

    [1] K. Kim, T. H. Chalidabhongse, D. Harwood, and L. Davis, “Real-time foreground-background segmentation using codebook model,” Real-Time Imaging, vol. 11, no. 3, pp. 172-185, June. 2005.
    [2] J. M. Guo, Y. F. Liu, C. H. Hsia, M. H. Shih, and C. S. Hsu, “Hierarchical method for foreground detection using codebook model,” IEEE Transaction on Circuits and Systems for Video Technology, vol. 21, no.6, pp. 804-815, June. 2011.
    [3] J. M. Guo, C. H. Hsia, Y. F. Liu, M. H. Shih, C.H. Chang, and J. Y Wu, “Fast background subtraction based on a multilayer Codebook model for moving object detection,” IEEE Transaction on Circuits and Systems for Video Technology, vol. 23, no.10, pp. 1809-1821, Oct. 2013.
    [4] A. Rav-Acha, Y. Pritch, and S. Peleg, “Making a long video short: dynamic video synopsis,” In Proc. IEEE Computer Society Conference on Computer Vision and Pattern Recognition, vol. 1, pp. 435-441, June. 2006.
    [5] Y. Pritch, A. Rav-Acha, A. Gutman, S. Peleg, “Webcam synopsis: peeking around the world,” In Proc. IEEE International Conference on Computer Vision, pp. 1-8, Oct. 2007.
    [6] Y. Pritch, A. Rav-Acha, and S. Peleg, “Nonchronological video synopsis and indexing, IEEE Transaction on Pattern Analysis and Machine Intelligence, vol. 30, no. 11, pp. 1971-1987, Nov. 2008.
    [7] Y. Pritch, S. Ratovitch, A. Hendel, and S. Peleg, ”Clustered synopsis of surveillance video,” In Proc. IEEE International Conference on Advanced Video and Signal Based Surveillance, pp. 195-200, Sept. 2009.
    [8] Y. Nie, NC. Xiao, H. Sun, and P. Li, “Compact video synopsis via global spatiotemporal optimization,” IEEE Transactions on Visualization and Computer Graphics, vol. 19, no. 10, pp. 1664-1676, Oct. 2013.
    [9] X. Zhu, J. Liu, J. Wang, H. Lu, “Key observation selection for effective video synopsis,” In Proc. International Conference on Pattern Recognition , pp. 2528-2531, Nov. 2012.
    [10] C. R. Huang, H. C. Chen, and P. C. Chung, ”Online surveillance video synopsis,” In Proc. IEEE International Symposium on Circuits and Systems, pp. 1843-1846, May. 2012.
    [11] S. Feng, Z. Lei, D. Yi, and S. Z. Li, Online content-aware video condensation,” In Proc. IEEE Conference on Computer Vision and Pattern Recognition, pp. 2082-2087, June. 2012.
    [12] L. Sun, J. Xing, H. Ai, and S. Lao, “A tracking based fast online complete video synopsis approach,” In Proc. International Conference on Pattern Recognition, pp. 1956-1959, Nov. 2012.
    [13] S. Wang, J. Yang, Y. Zhao, A. Cai, and S. Z. Li, “A surveillance video analysis and storage scheme for scalable synopsis browsing,” In Proc. IEEE International Conference on Computer Vision Workshops, pp. 1947-1954, Nov. 2011.
    [14] S. Feng, S. Liao, Z. Yuan, and S. Z. Li, “Online principal background selection for video synopsis,” In Proc. International Conference on Pattern Recognition, pp. 17-20, Aug. 2010.
    [15] A. Yildiz, A. Ozgur, and Y.S. Akgul, “Fast non-linear video synopsis,” In Proc. International Symposium on Computer and Information Sciences, pp. 1-6, Oct. 2008.
    [16] Z. Li, P. Ishwar, J. Konrad, “Video condensation by ribbon carving,” IEEE Transaction on Image Processing, vol. 18, no. 11, pp. 2572-2583, Nov. 2009.
    [17] W. Fu, J. Wang, L. Gui, H. Lu, S. Ma, “Online video synopsis of structured motion,” Neurocomputing, vol.135, pp.155-162, July. 2014.
    [18] M. Lu, Y. Wang, G. Pan, “Generating fluent tubes in video synopsis,” In Proc. IEEE International Conference on Acoustics, Speech and Signal Processing, pp. 2292-2296, May. 2013.
    [19] E. J. Carmona, J. Martinez-Cantos and J. Mira, “A new video segmentation method of moving objects based on blob-level knowledge,” Pattern Recognition Letters, vol. 29, issue 3, pp. 272-285, Feb. 2008.
    [20] T. Kailath, ”The divergence and Bhattacharyya distance measures in signal selection,” IEEE Transactions on Communication Technology, vol. 15, no. 1, pp. 52-60, June. 1967.
    [21] S. Suzuki and K. Abei, Topological structural analysis of digitized binary images by border following,” In Proc. Computer Vision, Graphics, and Image Processing, vol. 30, no. 1, pp. 32-46, June. 1985.
    [22] K. Toyama, J. Krumm, B. Brumitt, and B. Meyers, “Wallflower: principles and practice of background maintenance,” In Proc. IEEE Conference on Computer Vision, vol. 1, pp. 255–261, Sept. 1999.
    [23] V. Kolmogorov and R. Zabih, “What energy functions can be minimized via graph cut,” IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 26, no. 2, pp. 147-159, Feb. 2004.
    [24] J. Sun, W. Zhang, and H. Shum, “Background cut,” In Proc. European Conference on Computer Vision, pp. 628-641, May. 2006.
    [25] S. Kirkpatrick, C. D. Gelatt, and M. P. Vecchi, “Optimization by simulated annealing,” Science, vol. 220, no. 4598, pp. 671-680, May. 1983.
    [26] D. Lowe, “Distinctive image features from scale-invariant keypoints,” International Journal of Computer Vision, vol 60, no. 2, pp. 91-110, Nov. 2004.
    [27] C. Stauffer and W. E. L. Grimson, “Adaptive background mixture models for real-time tracking,” In Proc. IEEE Computer Society Conference on Computer Vision and Pattern Recognition, vol. 2, pp. 2246-2252, Jun. 1999.
    [28] M. Heikkila and M. Pietikainen, ” A texture-based method for modeling the background and detecting moving objects,” IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 28, no. 4, pp. 657-662, April. 2006.
    [29] K. Kim, D. Harwood, and L. S. Davis, “Background updating for visual surveillance,” Lecture Notes in Computer Science, vol. 3804, pp. 337-346, 2005.
    [30] Connected-component : http://en.wikipedia.org/wiki/Connected-component_labeling
    [31] Statistical Modeling of Complex Background for Foreground Object Detection [Online] Available : http://perception.i2r.a-star.edu.sg/bk_model/bk_index.html.
    [32] Performance Evaluation of Surveillance Systems [Online]. Available: http://www.research.ibm.com/peoplevision/performanceevaluation.html

    QR CODE