簡易檢索 / 詳目顯示

研究生: 歐少府
Shao-fu Ou
論文名稱: 應用於微電網系統之多臂型雙向功率轉換器研製
Development of Multi-arm Bidirectional Power Flow Converter for Micro-grid Systems
指導教授: 黃仲欽
Jonq-chin Hwang
口試委員: 葉勝年
Sheng-nian Yeh
吳瑞南
Ruay-nan Wu
林法正
Faa-jeng Lin
學位類別: 碩士
Master
系所名稱: 電資學院 - 電機工程系
Department of Electrical Engineering
論文出版年: 2013
畢業學年度: 101
語文別: 中文
論文頁數: 77
中文關鍵詞: 微電網蓄電池直流-直流功率轉換器換流器
外文關鍵詞: micro-grid, battery, dc-dc power converter, inverter
相關次數: 點閱:309下載:5
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本文旨在設計及製作應用於微電網系統並以數位信號處理器為基礎且具有雙向功率轉換功能之多臂式直流-直流功率轉換器。採用多臂式之架構可有效降低功率級開關元件的額定電流,亦能降低直流匯流排電壓漣波及蓄電池輸出電流漣波,提升系統之效率。本系統之直流-直流功率轉換器採用三臂式之架構以達到蓄電池儲能與釋能之控制,作為蓄電池與直流匯流排之能量管理。蓄電池功率轉換器之輸出饋入直流匯流排,由直流匯流排連接直流負載及三相併網型功率轉換器。當蓄電池釋能時可將蓄電池側之功率回饋至市電側或供應給直流負載;亦可將市電側之功率轉換至直流匯流排,再經由三臂式直流-直流功率轉換器對蓄電池作充電,以達調節直流匯流排電壓及雙向功率轉換之控制。在蓄電池充放電控制上,本文採用交錯式脈波寬調變控制搭配電壓及電流閉迴路控制策略來完成,並藉由蓄電池殘存電荷之偵測控管蓄電池之內部能源。
    本文採用32位元之數位訊號處理器(DSP,TMS320F28335)為整體系統之控制核心,完成蓄電池功率轉換器之實體製作,其控制策略皆由軟體程式完成。本文在市電併聯之系統整合上,完成蓄電池放電功率2kW,蓄電池輸出電流漣波百分比為8.2%,市電側輸出電流總諧波失真率為6.93%,整體效率約為90.5%;在蓄電池組充電部分,完成充電功率為1kW,蓄電池輸入電流漣波百分比為8.12%,市電側輸入電流總諧波失真率為6.54%,整體效率為91.3%。


    The thesis presents the design and development of multi-arm bidirectional power flow converter for micro-grid system based on digital signal processor. By using the multi-arm structure, the rated current of the power components, the ripple voltage and the ripple current can be decreased effectively. The efficiency of the system can be increased simultaneously as well. In order to manage the energy between the battery and the dc-bus, this system adopts the three-arm structure to store and release battery energy. The output of the battery power converter is connected to dc-bus, the dc load and the three-phase inverter. This system is not only capable of transmitting battery energy on the dc side to the grid-connected power system and the dc load while the battery releases energy, but also can transmit energy on the ac side to the dc-bus and charge the battery via the three-arm power converter. Thus, regulating the voltage of the dc-bus and switching power flow bidirectionally can be achieved. By controlling charging or discharging of the battery, this system is realized by using interleaved pulse-width modulation and voltage as well as current closed-loop control strategy. Moreover, battery energy can be managed by estimating residual capacity of batteries.

    In this thesis, a 32-bits digital controller is used as the control core to implement the multi-arm bidirectional power flow converter. All the control strategies are accomplished by software. A battery storage power supply system, with 2kW effective battery power, 92.5% efficiency, 8.2% ripple current, and 6.93% total current harmonic distortion has been completed in discharging mode; moreover, a 1kW effective battery power, 90% efficiency, 8.12% ripple current, and 6.54% total current harmonic distortion has also been realized in charging mode.

    中文摘要 I 英文摘要 II 誌  謝 III 目  錄 IV 符號索引 VI 圖表索引 IX 第一章 緒論 1 1.1 研究動機及目的 1 1.2 文獻探討 2 1.3 本文規格及特色 3 1.4 本文大綱 5 第二章 三臂型雙向功率轉換器分析及控制 7 2.1 前言 7 2.2 三臂型雙向功率轉換器的模式 7 2.3 三臂型雙向功率轉換器的脈波寬調變控制策略 8 2.4 多臂型功率轉換器的電壓及電流控制策略 12 2.5 多臂型功率轉換器的控制流程及實測結果 18 2.6結語 29 第三章 三相直流-交流功率轉換器的控制策略 30 3.1 前言 30 3.2 三相直流-交流功率轉換器的控制 31 3.2.1 功率控制 32 3.2.2 直流側電壓控制 34 3.3 實測結果 36 3.4 結語 43 第四章 系統整合及實測結果 44 4.1 前言 44 4.2 蓄電池供電系統 44 4.2.1 蓄電池殘存電荷之偵測 45 4.2.2蓄電池充及放電控制策略 47 4.3 系統整合的模式及保護措施 48 4.4軟體程式規劃 51 4.4.1 蓄電池充電、放電副程式流程 51 4.4.2 三相併網型功率轉換器主程式流程 56 4.4.3 三相電壓角位置之數位鎖相迴路副程式流程 58 4.4.4 三相併網型功率轉換器之控制流程 60 4.5實測結果 62 4.6結語 70 第五章 結論與建議 71 5.1 結論 71 5.2 建議 72 參考文獻 73 附錄A 系統規格 76 附錄B 電流漣波指標 77

    [1]C. Y. Inaba, Y. Konishi and M. Nakaoka, “High frequency PWM controlled step-up chopper type DC-DC power converters with reduced peak switch voltage stress”, IEE proceedings electric power applications, vol. 151, no. 1, pp. 47-52, 2004.
    [2]余景州,”數位控制之多臂式直流-直流功率轉換器於燃料電池供電系統之應用”,國立台灣科技大學電機工程研究碩士論文,民國九十五年七月。
    [3] 陳加振,“太陽能及蓄電池混合供電系統之研製”,國立台灣科技大學電機研究所碩士論文,民國一百年七月。
    [4]陳立修,”燃料電池功率轉換系統之研製”,國立台灣科技大學電機工程研究碩士論文,民國九十六年七月。
    [5] Yao Chen, XinMin Jin, “Modeling and control of three-phase voltage source PWM rectifier”, International power electronics and motion control conference, vol. 3, no. 1, pp. 427-432, 2006.
    [6]Y. Chen, K. Smedley, “Three-phase boost-type grid-connected inverter”, IEEE transactions on power electronics, vol. 23, no. 5, pp. 2301-2309, 2008.
    [7]J. M. Carrasco, L. G. Franquelo, J. T. Bialasiewicz, E. Galvan, R. C. P. Guisado, Ma. A. M. Prats, J, I. Leon, N. M. Alfonso, “Power-electronic systems for the grid integration of renewable energy sources: a survey”, IEEE transactions on industrial electronics, vol. 53, no. 4, pp. 1002-1016, 2006.
    [8]W. Zhang, W. Chen, “Research on voltage-source PWM inverter based on state analysis method,” IEEE international conference on mechatronics and automation, vol. 1, no. 1, pp. 2183 - 2187, 2009.
    [9]N. Hattori, N. Morotomi, S. Miyake, M. Nakaoka, “Utility grid-tied 3-phase central PV inverter embedding neutral point voltage shifting principle into instantaneous current control implementation”, Industrial power electronics conference, vol. 1, no. 1, pp.3230-3235, 2010.
    [10]B. Vladimir, K. Vikram” A new mathematical model and control of a three-phase AC-DC voltage source converter”. IEEE transactions on electronics, vol. 12, no. 1, pp. 116-123, 1997.
    [11]K. Nishida, T. Ahmed, M. Nakaoka, “Development of grid-connected wind energy system employing interior PM synchronous generator and multi-pulse rectifier”, IEEE energy conversion congress and exposition, vol. 1, no. 1, pp. 3374-3381, 2010.
    [12]S. G. Jeong, M. H. Park, “The analysis and compensation of Dead-Time effects in PWM inverters,” IEEE transactions on industrial electronics, vol. 38, no. 2, 1991.
    [13] A. L. Julian, G. Oriti, T. A. Lipo, “Elimination of common-mode voltage in three-phase sinusoidal power converters, ” IEEE transactions power electron, vol. 14 no. 5, pp. 982-989, 1999.
    [14]N. Aizawa, H. Kubota, “Analysis of common-mode voltage elimination of PWM inverter with auxiliary inverter,” IEEE international conference on mechatronics and automation, vol. 1, no. 1, pp. 889 -893, 2010.
    [15]鍾秉學,”單相及三相市電併聯之功率轉換器研製”,國立台灣科技大學電機工程研究碩士論文,民國一百年七月。
    [16]S. K. Chung, “Phase-locked loop for grid-connected three-phase power converter systems,” IEEE proceedings electronic power applications, vol. 147, no. 3, pp. 213-219, 2000.
    [17]S. A. O. da Silva, E. Tomizaki, R. Novochadlo and E. A. A. Coelho, “PLL structures for utility connected systems under distorted utility conditions,” IEEE industrial electronics conference, vol. 4, no. 1, pp. 2636-2641, 2006.
    [18]J. I. Itoh, T. Fujii, I. Sato, D. Tanaka, “Analysis of Dead-Time compensation method using disturbance observer for vector control,” IEEE transactions on industry applications, vol.128, no.8, pp. 1005-1012.

    [19]S. G. Jeong, M. H. Park, ”The analysis and compensation of Dead-Time effects in PWM inverters”, IEEE transactions on industrial electronics, vol. 38, no. 2, pp. 108-114, 1991.
    [20]V. Blasko, V. Kaura, ”A new mathematical model and control of a three-phase AC-DC voltage source converter”. IEEE transactions on electronics, vol. 12, no. 1, pp. 116-123, 1997.
    [21]簡君哲, ”微電網之三相變頻器併聯控制策略研製”, 國立台灣科技大學電機工程研究碩士論文,民國一百零一年七月。
    [22]Y Wu , X. Jiang, J. Xu, Q. Wang, S. Wan, “Inverters parallel operation based on CAN”, Power electronics and motion control conference, vol. 3, no. 1, pp. 1-5, 2006.
    [23]梁適安,交換式電源供給器之理論與實務設計,全華出版社,1994。
    [24]D. J. Becker , “Lead-Acid battery charge process in photovoltaic applications”, IEEE conference, vol. 1, no. 1, pp. 242-247, 2006.
    [25]YUASA Battery Technologies,密閉式鉛酸蓄電池使用技術手冊,http://www.yuasa.com.tw/_chinese/01_products/03_detail_03.php?pid=3&ppid=19&pdid=7&vd=51,2011
    [26]T. Yanagihara , A. Kawamura, “Residual capacity estimation of sealed Lead-Acid batteries for electric vehicles”, IEEE power conversion conference, vol. 2, no. 1, pp. 943-946, 1997.
    [27]J. Alvarez, J. Marcos, A. Lago, A. A. Nogueiras, J. Doval, C. M. Peiialver, “A fully digital smart and fast Lead-Acid battery charge system”, IEEE annual power electronics specialist conference, vol. 2, no. 1, pp. 913-917, 2003.
    [28]T. C. Hua ,T. Y. Tasi,C. W. Chuang, W. B. Shr, “Design and implementation of a residual capacity estimator for Lead-Acid batteries”, IEEE conference on industrial electronics and applications, vol. 1, no. 1, pp. 2018-2023, 2007.

    無法下載圖示 全文公開日期 2018/07/25 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)
    全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
    QR CODE