簡易檢索 / 詳目顯示

研究生: 余修安
Hsiu-An Yu
論文名稱: 電紡聚乙烯醇/葡萄糖氧化酵素串珠奈米纖維薄膜於拋棄式葡萄糖感測試紙應用之研究
Electrospun Poly(vinyl alcohol) Beaded Nanofibrous Membranes for Disposable Glucose Biosensor Application
指導教授: 吳昌謀
Chang-Mou Wu
口試委員: 王丞浩
Wang, Chen-Hao
楊銘乾
Ming-Chien Yang
學位類別: 碩士
Master
系所名稱: 工程學院 - 材料科學與工程系
Department of Materials Science and Engineering
論文出版年: 2015
畢業學年度: 103
語文別: 中文
論文頁數: 94
中文關鍵詞: 靜電紡絲葡萄糖感測器固定化網版印刷電極奈米材料
外文關鍵詞: electrospinning, glucose biosensor, immobilization, screen printing electrodes, nanomaterial
相關次數: 點閱:297下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

本研究主要為使用靜電紡絲技術製備聚乙烯醇(PVA)串珠奈米纖維複合膜應用於拋棄式網版印刷電極,利用串珠纖維的多孔性及高比表面積特性,相較於一般靜電紡絲奈米纖維具有更高的比表面積,並證實降低酵素的用量奈米串珠纖維複合膜依然具有一定的靈敏度,且可使用網版印刷電極進行電化學分析。此外除了透過電化學的計時安培法觀察靈敏度、抗干擾性、穩定性等方面進行分析以外。本研究也對奈米串珠纖維膜進行SEM與TEM結構微觀分析。此外為了進一步提高奈米串珠纖維複合膜的靈敏度,額外添加少許奈米材料如奈米金與氧化石墨烯,其中奈米金可增加導電度與減少應答時間,而氧化石墨烯則可將酵素的活性中心體拉於表面,進而提高靈敏度。此外本研究亦使用戊二醛交聯使酵素與聚乙烯醇共價鍵結,與使用試劑EDC與NHS將酵素接枝於氧化石墨烯製成試片,進行電化學分析。此外為了降低干擾,本研究也添加赤血鹽作為酵素反應時的電子傳媒,以降低電化學測試時的電壓施加量,使干擾物不會因電壓而反應,藉此達到抗干擾效果。
本研究成功製備出電紡聚乙烯醇/葡萄糖氧化酵素/赤血鹽奈米串珠纖維膜,此纖維膜的靈敏度高於一般電紡纖維薄膜約3.2倍,並且降低酵素用量40%後,依然擁有高於一般電紡纖維薄膜約1.3倍的靈敏度。
本研究亦使用戊二醛交聯技術進行靈敏度測試以及比較穩定性分析,由數據可得知雖然戊二醛交聯後的靈敏度增加量並不高,大約增加1.5倍而已,但戊二醛交聯後的穩定性卻比未交聯的穩定性高很多,證實交聯可將酵素固定於PVA上使酵素能更加穩定。


This study is using electrospinning PVA prepared beaded nanofibrous composite membrane applied to disposable screen-printed electrode, the property of beaded Nanofibrous membrane are porosity and high surface area, it has higher surface area compared with electrospinning nanofibrous membrane, and prove that decreased the amount of enzyme in the beaded nanofibrous membrane still have some sensitivity, and the beaded nanofibrous membrane can also use screen-printing electrode for electrochemical analysis.
Except observing sensitivity, interference resistance, and stability through chronoamperometry analysis, also observing beaded nanofibrous structure through scanning electron microscope (SEM) and transmission electron microscope (TEM). Moreover, to improve sensitivity of beaded nanofibrous membrane, adding small amount of grapnene oxide and nano gold particle, which nano gold can decrease the responsing time and increase the conductivity, and graphene oxide can make the active center more cross the surface of the enzyme. And we also use cross-linking method with glutaraldehyde and sulfuric acid, and using EDC & NHS to combine enzyme with graphene oxide, which can increase the sensitivity of the biosensor.
This study successful prepared PVA/Glucose oxidase/Ferricyanide salt beaded nanofibrous membrane, and this membrane can offer about 3.2 times of sensitivity than traditional electrospun nanofibrous film, and when deceasing about 40% of enzyme usage amount, it still have about 1.3 times of sensitivity than traditional electrospun nanofibrous film.
Using cross-linking method can increase about 1.5times of the sensitivity, it is not a huge increase, but after cross-linking can enhance the stability of the biosensor.

摘 要.. I Abstract.. III 致 謝.. V 目 錄………………...…………………………………..………………..VI 圖目錄… 1 表目錄… 3 第一章、 前言 4 1.1引言 4 1.2文獻回顧 6 1.3研究動機與目的 16 第二章、 原理 18 2.1 靜電紡絲 18 2.2葡萄糖感測器 20 第三章、 實驗 25 3.1 藥品 25 3.2實驗設備及測試儀器 26 3.3實驗流程 27 3.4溶液配製 28 3.4.1配製PVA水溶液 28 3.4.2配製赤血鹽水溶液 28 3.4.3配製PVA/赤血鹽/GOx電紡溶液 28 3.4.4配製 PVA/赤血鹽/GOx/ Au電紡溶液 29 3.4.5配製PVA/赤血鹽/GOx/GO電紡溶液 29 3.4.6配製磷酸鹽緩衝溶液 29 3.4.7配製葡萄糖水溶液 30 3.4.8配製戊二醛交聯溶液 30 3.4.9配製 EDC水溶液 31 3.4.10配製NHS水溶液 31 3.4.11配製接枝酵素於氧化石墨烯之電紡溶液 31 3.4.12配製未接枝酵素於氧化石墨烯之電紡溶液 33 3.5電紡設備裝置 34 3.6電紡參數探討 38 3.6.1不同聚乙烯醇平均分子量的影響 38 3.6.2不同濃度PVA水溶液型態影響 40 3.6.3不同靜電紡絲電場下型態影響 43 3.6.4不同靜電紡絲距離型態影響 44 3.6.5溶液流速對靜電紡絲影響 46 3.7電紡試片製作 48 3.7.1電紡試片製作 48 3.7.2交聯電紡試片製作 49 第四章、 結果與討論 51 4.1纖維型態分析 51 4.2靈敏度分析 55 4.2.1靜電紡絲串珠纖維靈敏度分析 55 4.2.2加奈米材料靈敏度影響 58 4.2.3交聯反應後靈敏度影響 60 4.2.4酵素接枝於氧化石墨烯之靈敏度影響 64 4.3穩定性分析 69 4.4抗干擾分析 71 第五章、 結論 72 參考文獻 75

[1] X. Li, Y. Zhang, H. Li, H. Chen, Y. Ding, and W. Yang, "Effect of oriented fiber membrane fabricated via needleless melt electrospinning on water filtration efficiency," Desalination, vol. 344, pp. 266-273, 2014.
[2] 柯尚亨,"熔融靜電紡絲型為及性能之研究" 纖維與複合材料學系, 逢甲大學,台灣,2012
[3] J. Doshi and D. H. Reneker, "Electrospinning process and applications of electrospun fibers," Journal of Electrostatics, vol. 35, pp. 151-160, 1995.
[4] K. Sawicka, P. Gouma, and S. Simon, "Electrospun biocomposite nanofibers for urea biosensing," Sensors and Actuators B: Chemical, vol. 108, pp. 585-588, 2005.
[5] G. Ren, X. Xu, Q. Liu, J. Cheng, X. Yuan, L. Wu,Y. Wan, "Electrospun poly(vinyl alcohol)/glucose oxidase biocomposite membranes for biosensor applications," Reactive and Functional Polymers, vol. 66, pp. 1559-1564, 2006.
[6] F. Guo, X. X. Xu, Z. Z. Sun, J. X. Zhang, Z. X. Meng, W. Zheng,H. M. Zhou, B. L. Wang, Y. F. Zheng, "A novel amperometric hydrogen peroxide biosensor based on electrospun Hb-collagen composite," Colloids Surf B Biointerfaces, vol. 86, pp. 140-5, 2011.
[7] J. Mohrova and K. Kalinova, "Different structures of PVA nanofibrous membrane for sound absorption application," Journal of Nanomaterials, vol. 2012, pp. 1-4, 2012.
[8] X. Chen, J. Wang, Q. An, D. Li, P. Liu, W. Zhu,X. Mo, "Electrospun poly(l-lactic acid-co--caprolactone) fibers loaded with heparin and vascular endothelial growth factor to improve blood compatibility and endothelial progenitor cell proliferation," Colloids and Surfaces B: Biointerfaces, vol. 128, pp. 106-114, 2015.
[9] X. W. Haito Niu, Tong Lin, "upward needleless electrospinning of nanofibers," in Engineered Fibers and Fabrics, ed. Australia, 2012.
[10] J.M. Deitzel, J.D. Kleinmeyer, J.K. Hirvonen, and N. C. B. Tan, "Controlled deposition of electrospun polyethylene oxide fibers," polymer, vol. 42, pp. 8163-8170, 2001.
[11] A. Stafiniak, B. Boratyński, A. Baranowska-Korczyc, A. Szyszka, M. Ramiączek-Krasowska, J. Prażmowska, K. Fronc, D. Elbaum, R. Paszkiewicz, M. Tlaczala, "A novel electrospun ZnO nanofibers biosensor fabrication," Sensors and Actuators B: Chemical, vol. 160, pp. 1413-1418, 2011.
[12] 邱浩耕,"電紡聚乙烯醇/葡萄糖氧化酵素生物複合薄膜用於生物感測器之研究" 逢甲大學,台灣,2010
[13] 林香伶,"奈米材料修式電紡聚乙烯醇/葡萄糖氧化酵素複合奈米纖維薄膜應用於葡萄糖生物感測器" 逢甲大學,台灣,2012
[14] 陳廷彰,"奈米材料修式電紡聚乙烯醇/葡萄糖氧化酵素複合奈米纖維膜於拋棄室葡萄糖感測試紙應用" 逢甲大學,台灣,2014
[15] N. Wang, K. Burugapalli, W. Song, J. Halls, F. Moussy, A. Ray, Y. Zheng, "Electrospun fibro-porous polyurethane coatings for implantable glucose biosensors," Biomaterials, vol. 34, pp. 888-901, 2013.
[16] M. Scampicchio, A. Arecchi, N. S. Lawrence, and S. Mannino, "Nylon nanofibrous membrane for mediated glucose biosensing," Sensors and Actuators B: Chemical, vol. 145, pp. 394-397, 2010.
[17] Y. J. Shin and J. Kameoka, "Amperometric cholesterol biosensor using layer-by-layer adsorption technique onto electrospun polyaniline nanofibers," Journal of Industrial and Engineering Chemistry, vol. 18, pp. 193-197, 2012.
[18] I. C. H. Fong, D.H. Reneker, "Beaded nanofibers formed during electrospinning," polymer, vol. 40, pp. 4585-4592, 1998.
[19] J. Tao and S. Shivkumar, "Molecular weight dependent structural regimes during the electrospinning of PVA," Materials Letters, vol. 61, pp. 2325-2328, 2007.
[20] C. Berkland, D. W. Pack, and K. K. Kim, "Controlling surface nano-structure using flow-limited field-injection electrostatic spraying (FFESS) of poly(D,L-lactide-co-glycolide)," Biomaterials, vol. 25, pp. 5649-58, 2004.
[21] R. Casasola, N. L. Thomas, A. Trybala, and S. Georgiadou, "Electrospun poly lactic acid (PLA) fibres: Effect of different solvent systems on fibre morphology and diameter," Polymer, vol. 55, pp. 4728-4737, 2014.
[22] M. Z. Elsabee, H. F. Naguib, and R. E. Morsi, "Chitosan based nanofibers, review," Materials Science and Engineering: C, vol. 32, pp. 1711-1726, 2012.
[23] S. Somvipart, S. Kanokpanont, R. Rangkupan, J. Ratanavaraporn, and S. Damrongsakkul, "Development of electrospun beaded fibers from Thai silk fibroin and gelatin for controlled release application," International Journal of Biological Macromolecules, vol. 55, pp. 176-84, 2013.
[24] J. Wang, "Electrochemical Glucose Biosensor," Chemical Reviews, vol. 108, pp. 814-825, 2008.
[25] Alexandre A. Shul'ga, Milena Koudelka-Hep, and Nico F. de Rooij, "The effect of divalent metal ions on the performance of a glucose-sensitive ENFET using potassium ferricyanideas an oxidising substrate," sensors and Actuators B: Chemical, pp. 432-435, 1995.
[26] S. R. Lee, Y. T. Lee, K. Sawada, H. Takao, and M. Ishida, "Development of a disposable glucose biosensor using electroless-plated Au/Ni/copper low electrical resistance electrodes," Biosens Bioelectron, vol. 24, pp. 410-4, 2008.
[27] A. E. G. Cass, G. Davis, G. D. Francis, H. A. O. Hill, W. J. Aston, I. J. Higgins, E. V. Plotkin, L. D. L. Scott, A. P. F. Turner, "Ferrocene-mediated enzyme electrode for amperometric determination of glucose," Analytical Chemistry, vol. 56, pp. 667-671, 1984.
[28] 蔡君賢,"含鉻黃血鹽修飾碳糊電極之製備及其應用於電流式生醫感測器" 化學工程研究所,南台科技大學,台灣,2005
[29] T. J. Ohara, R. Rajagopalan, and A. Heller, "Glucose electrodes based on cross-linked bis(2,2'-bipyridine)chloroosmium(+/2+) complexed poly(1-vinylimidazole) films," Analytical Chemistry, vol. 65, pp. 3512-3517, 1993.
[30] S. B. Bankar, M. V. Bule, R. S. Singhal, and L. Ananthanarayan, "Glucose oxidase--an overview," Biotechnology Advances, vol. 27, pp. 489-501, 2009.
[31] J. Li, J. Yu, F. Zhao, and B. Zeng, "Direct electrochemistry of glucose oxidase entrapped in nano gold particles-ionic liquid-N,N-dimethylformamide composite film on glassy carbon electrode and glucose sensing," Analytica Chimica Acta, vol. 587, pp. 33-40, 2007.
[32] X. Su, J. Ren, X. Meng, X. Ren, and F. Tang, "A novel platform for enhanced biosensing based on the synergy effects of electrospun polymer nanofibers and graphene oxides," Analyst, vol. 138, pp. 1459-66, 2013.
[33] Eugenii Katz, Itamar Willner, and A. B. Kotlyar, "A non-compartmentalized glucose O2 biofuel cell by bioengineered electrode surface," Electroanalytical Chemistry, vol. 479, pp. 64-68, 1999.
[34] Z. Nasri and E. Shams, "A glucose biosensor based on direct electron transfer of glucose oxidase immobilized onto glassy carbon electrode modified with nitrophenyl diazonium salt," Electrochimica Acta, vol. 112, pp. 640-647, 2013.
[35] L. Shu-Na, T. Ya-Jing, and C. Chen-Xin, "Immobilization and Characterization of Glucose Oxidase on Single-Walled Carbon Nanotubes and Its Application to Sensing Glucose," Chinese Journal of Chemistry, vol. 25, pp. 439-447, 2007.
[36] Z.-G. Wang, L.-S. Wan, Z.-M. Liu, X.-J. Huang, and Z.-K. Xu, "Enzyme immobilization on electrospun polymer nanofibers: An overview," Journal of Molecular Catalysis B: Enzymatic, vol. 56, pp. 189-195, 2009.
[37] L. Zhou, Y. Jiang, J. Gao, X. Zhao, L. Ma, and Q. Zhou, "Oriented immobilization of glucose oxidase on graphene oxide," Biochemical Engineering Journal, vol. 69, pp. 28-31, 2012.
[38] M. V. Jose, S. Marx, H. Murata, R. R. Koepsel, and A. J. Russell, "Direct electron transfer in a mediator-free glucose oxidase-based carbon nanotube-coated biosensor," Carbon, vol. 50, pp. 4010-4020, 2012.
[39] H. Hinterwirth, W. Lindner, and M. Lämmerhofer, "Bioconjugation of trypsin onto gold nanoparticles: Effect of surface chemistry on bioactivity," Analytica Chimica Acta, vol. 733, pp. 90-97, 2012.
[40] M'hamed Djennad, Djafer Benachour, Hartmut Berger, and Reinhard Schomacker, "poly vinyl alcohol Ultrafiltration Membranes Synthesis Characterization the Use for Enzyme immobilization," Engineering in Life Sciences, vol. 3, pp. 446-452, 2003.
[41] 洪啟倫,"利用預氧化碳電極誘發葡萄糖氧化酵素之直接電子傳遞效應於感測器與燃料電池之研究" 化學系,國立中興大學,台中,2007
[42] G. T. Hermanson, Bioconjugate Techniques Third ed., 2013.
[43] Chi Wang, Huan-Sheng Chien, Chia-Hung Hsu, Yin-Chi Wang, Cheng-Ting Wang, and H.-A. Lu, "Electrospinning of Polyacrylonitrile Solutions at Elevated Temperatures" Macromolecules, vol. 40, pp. 7973-7983, 2007.
[44] G. C. Rutledge and S. V. Fridrikh, "Formation of fibers by electrospinning," Advanced Drug Delivery Reviews, vol. 59, pp. 1384-91, 2007.
[45] S. Lingaiah and K. Shivakumar, "Electrospun high temperature polyimide nanopaper," European Polymer Journal, vol. 49, pp. 2101-2108, 2013.
[46] F. Ejaz Ahmed, B. S. Lalia, N. Hilal, and R. Hashaikeh, "Underwater superoleophobic cellulose/electrospun PVDF–HFP membranes for efficient oil/water separation," Desalination, vol. 344, pp. 48-54, 2014.
[47] L. Wu, X. Yuan, and J. Sheng, "Immobilization of cellulase in nanofibrous PVA membranes by electrospinning," Journal of Membrane Science, vol. 250, pp. 167-173, 2005.
[48] C.-M. Wu, H.-G. Chiou, S.-L. Lin, and J.-M. Lin, "Effects of electrostatic polarity and the types of electrical charging on electrospinning behavior," Journal of Applied Polymer Science, vol. 126, pp. E89-E97, 2012.
[49] E. Smit, U. Bűttner, and R. D. Sanderson, "Continuous yarns from electrospun fibers," Polymer, vol. 46, pp. 2419-2423, 2005.
[50] C. P. Sousa, A. S. Polo, R. M. Torresi, S. I. de Torresi, and W. A. Alves, "Chemical modification of a nanocrystalline TiO2 film for efficient electric connection of glucose oxidase," Journal of Colloid and Interface Science, vol. 346, pp. 442-7, 2010.
[51] J. S. Graca, R. F. de Oliveira, M. L. de Moraes, and M. Ferreira, "Amperometric glucose biosensor based on layer-by-layer films of microperoxidase-11 and liposome-encapsulated glucose oxidase," Bioelectrochemistry, vol. 96, pp. 37-42, 2014.
[52] F. Zhao, R. C. Slade, and J. R. Varcoe, "Techniques for the study and development of microbial fuel cells: an electrochemical perspective," Chemical Society Reviews, vol. 38, pp. 1926-39, 2009.

無法下載圖示 全文公開日期 2020/07/23 (校內網路)
全文公開日期 本全文未授權公開 (校外網路)
全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
QR CODE