簡易檢索 / 詳目顯示

研究生: 高華宏
Hwa-Hung Kao
論文名稱: 小型化且寬頻的微帶線至矩形波導與基板合成波導轉接
Compact and Broadband Microstrip Line to Rectangular Waveguide or Substrate-integrated Waveguide Transitions
指導教授: 王蒼容
Chun-Long Wang
口試委員: 吳瑞北
Ruey-Beei Wu
楊成發
Chang-Fa Yang
學位類別: 碩士
Master
系所名稱: 電資學院 - 電子工程系
Department of Electronic and Computer Engineering
論文出版年: 2018
畢業學年度: 106
語文別: 中文
論文頁數: 176
中文關鍵詞: 微帶線矩形波導基板合成波導轉接
外文關鍵詞: microstrip line, rectangular waveguide, Substrate-integrated Waveguide, transition
相關次數: 點閱:281下載:5
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

本論文提出了寬頻的微帶線至矩形波導轉接、縮小化之微帶線至矩形波導轉接以及微帶線至基板合成波導轉接。
在第二章,我們提出50 Ω微帶線至矩形波導的轉接設計,透過反對稱Quasi-Yagi來進行轉接,並以單段雙邊平行帶線(DSPSL)來設計阻抗匹配。我們將這個轉接實現在Rogers® RO5880、RO4003與RO6010的基板上,-20 dB反射係數的頻寬分別為53.3%、41.7%和40.8%,皆能完全涵蓋X-band (8.2-12.4 GHz),且在這個頻帶內,穿透係數分別大於-0.03 dB、-0.09 dB和-0.09 dB。
在第三章,我們根據前一章節的結構進行縮小化處理,透過電容補償DSPSL作為阻抗匹配DSPSL之等效電路,來達成電路面積的縮小化。我們將這個轉接實現在Rogers® RO5880、RO4003與RO6010的基板上,-15 dB反射係數的頻寬分別為42.8%、40.1%和41.9%,皆能完全涵蓋X-band (8.2-12.4 GHz),且阻抗匹配DSPSL的長度分別縮短了40%、40%和30%。
在第四章,我們提出50 Ω微帶線至基板合成波導(SIW)的轉接設計,利用兩倍板厚之單段微帶線及一倍板厚之二階Chebyshev微帶線進行阻抗匹配設計,來達成寬頻的轉接。以兩倍板厚之單段微帶線所達成的轉接,分別實現在Rogers® RO5880、RO4003與RO6010的基板上,-15 dB反射係數的頻寬分別為55.2%、52.4%和52.6%,皆能完全涵蓋S-band (2.6-3.95 GHz) ,且在這個頻帶內,穿透係數分別大於-0.19 dB、-0.27 dB和-0.23 dB;而以二階Chebyshev微帶線所達成的轉接,也分別實現在Rogers® RO5880、RO4003與RO6010的基板上,-15 dB反射係數的頻寬分別為52.1%、50.8%和49.9%,甚至,-20 dB反射係數的頻寬也分別達到43.8%、40.8%和40.1%,皆能完全涵蓋S-band (2.6-3.95 GHz) ,且在這個頻帶內,穿透係數分別大於-0.09 dB、-0.15 dB和-0.16 dB。


In this thesis, we propose three broadband planar transmission line-to-rectangular waveguide trnasitions, including the microstrip line-to-rectangular waveguide transition using the DSPSL matching section, miniaturized microstrip line-to-rectangular waveguide transition using the capacitance-compensated DSPSL matching section, and microstrip line-to-substrate integrated waveguide transition using the microstrip line matching section.
First of all, in chapter 2, the 50-Ω microstrip line-to-rectangular waveguide transition using the antisymmetric Quasi-Yagi along with the double-sided parallel strip line (DSPSL) matching section is proposed. The transition is realized on a variety of substrates with various dielectric constants, including Rogers® RO5880, RO4003, and RO6010. The fractional bandwidths of the proposed transitions realized on various substrates are 53.3%, 41.7%, and 40.8%, in which the reflection coefficients are smaller than -20 dB, covering the whole X-band (8.2-12.4 GHz). The corresponding transmission coefficients in this frequency are larger than -0.03 dB, -0.09 dB, and -0.09dB.
Secondly, in chapter 3, instead of the conventional DSPSL used in chapter 2, the capacitance-compensated DSPSL is utilized to miniaturize the microstrip line-to-rectantular waveguide transition, resulting in a miniaturized microstrip line-to-rectangular waveguide transition using the capacitance-compensated DSPSL. The transition is realized on various substrates, including Rogers® RO5880, RO4003, and RO6010. The fractional bandwidths of the proposed transitions realized on various substrates are 42.8%, 40.1%, and 41.9%, in which the reflection coefficients are smaller than -15 dB, covering the whole X-band (8.2-12.4 GHz). By applying the capacitance-compensated DSPSL, the lengths of DSPSL can be reduced by a factor of 40%, 40%, and 30%.
Finally, in chapter 4, two broadband microstrip line-to-substrate integrated waveguide(SIW) transitions are proposed. One transition utilizes one matching section to fulfill the broadband trantion on thick substrate and the other transition utilizes two Chebyshev matching sections to fulfill the broadband transition on thin substrate. The transition on thick substrate is realized on Rogers® RO5880, RO4003, and RO6010. The fractional bandwidths of the proposed transitions realized on various substrates are 55.2%, 52.4%, and 52.6%, in which the reflection coefficients ara smaller than -15 dB, covering the whole S-band (2.6-3.95 GHz). The corresponding transmission coefficients in this frequency are larger than -0.19 dB, -0.27 dB, and -0.23dB. On the other hand, the transition using two Chebyshev matching sections is realized on Rogers® RO5880, RO4003, and RO6010. The fractional bandwidths of the proposed transitions realized on various substrates are 52.1%, 50.8%, and 49.9%, in which the reflection coefficients are smaller than -15 dB. Moreover, the frequency range, for which the reflection coefficients are smaller than -20 dB, covering the whole S-band (2.6-3.95 GHz). The corresponding transmission coefficients in this frequency are larger than -0.09 dB, -0.15 dB, and -0.16dB.

摘要 I Abstract II 致謝 IV 目錄 V 表目錄 IX 圖目錄 XI 第1章 簡介 1 1.1 研究動機 1 1.2 文獻探討 2 1.2.1 微帶線至矩形波導轉接 2 1.2.2 微帶線至基板合成波導轉接 7 1.3 貢獻 11 1.4 論文架構 13 第2章 使用單段DSPSL阻抗匹配之微帶線至矩形波導轉接 14 2.1 轉接結構 15 2.2 轉接設計與分析 18 2.2.1 採用RO5880基板 23 2.2.1.1 忽略不連續效應之DSPSL阻抗匹配 23 2.2.1.2 考慮不連續效應之DSPSL阻抗匹配 28 2.2.1.3 背對背結構驗證 34 2.2.2 採用RO4003基板 36 2.2.2.1 忽略不連續效應之DSPSL阻抗匹配 36 2.2.2.2 考慮不連續效應之DSPSL阻抗匹配 40 2.2.2.3 背對背結構驗證 44 2.2.3 採用RO6010基板 46 2.2.3.1 忽略不連續效應之DSPSL阻抗匹配 46 2.2.3.2 考慮不連續效應之DSPSL阻抗匹配 50 2.2.3.3 背對背結構驗證 55 2.3 小結 57 第3章 使用電容補償DSPSL之縮小化微帶線至矩形波導轉接 59 3.1 縮小化結構 60 3.2 縮小化設計與分析 62 3.2.1 採用RO5880基板 66 3.2.1.1 DSPSL之電容補償縮小化 66 3.2.1.2 背對背結構驗證 72 3.2.2 採用RO4003基板 74 3.2.2.1 DSPSL之電容補償縮小化 74 3.2.2.2 背對背結構驗證 80 3.2.3 採用RO6010基板 82 3.2.3.1 DSPSL之電容補償縮小化 82 3.2.3.2 背對背結構驗證 88 3.3 小結 90 第4章 寬頻的微帶線至基板合成波導轉接 92 4.1 轉接結構 93 4.2 一階微帶線之阻抗匹配設計與分析 95 4.2.1 採用RO5880基板 96 4.2.1.1 一倍板厚之阻抗匹配 96 4.2.1.2 兩倍板厚之阻抗匹配 99 4.2.2 採用RO4003基板 104 4.2.2.1 一倍板厚之阻抗匹配 104 4.2.2.2 兩倍板厚之阻抗匹配 107 4.2.2.3 背對背結構驗證 110 4.2.3 採用RO6010基板 112 4.2.3.1 一倍板厚之阻抗匹配 112 4.2.3.2 兩倍板厚之阻抗匹配 115 4.3 二階微帶線之阻抗匹配設計與分析 120 4.3.1 採用RO5880基板 125 4.3.1.1 二階微帶線之Chebyshev阻抗匹配 125 4.3.2 採用RO4003基板 128 4.3.2.1 二階微帶線之Chebyshev阻抗匹配 128 4.3.2.2 背對背結構驗證 131 4.3.3 採用RO6010基板 133 4.3.3.1 二階微帶線之Chebyshev阻抗匹配 133 4.4 小結 136 第5章 結論 138 參考資料 140 附錄I. 142 功率承載求法 142 附錄II. 143 阻抗匹配之史密斯圖 143 附錄III. 151 微帶線至矩形波導轉接各結構之比較 151

[1] T. Q. Ho and Y.-C Shih, “Spectral-domain analysis of E-plane waveguide to microstrip transitions,” IEEE Trans. Microw. Theory Tech., vol. 37, no 2, pp. 388-392, Feb. 1989.
[2] Y. Hui-Wen, A. Abdelmonem, L. Ji-Fuh, and K. A. Zaki, “Analysis and design of microstrip-to-waveguide transitions,” IEEE Transactions on Microwave Theory and Techniques, vol. 41, pp. 2371-2380, 1994.
[3] H. Iizuka, K. Sakakibara, and N. Kikuma, “Millimeter-Wave Transition from Waveguide to Two Microstrip Lines Using Rectangular Patch Element,” IEEE Transactions on Microwave Theory and Techniques, vol 55, no. 5, pp.899-905, May 2007.
[4] N. Kaneda, Y. Qian, and T. Itoh, “A broad-band microstrip-to-waveguide transition using quasi-Yagi antenna,” IEEE Transactions on Microwave Theory and Techniques, vol. 47, no. 12, pp.2562-2567, Dec. 1999.
[5] T.-H. Lin and R.-B. Wu, “A broadband microstrip-to-waveguide transition with tapered CPS probe,” in Proc. 32th Eur. Microw. Conf., Milan, Italy, Sep. 2002. pp. 1-4.
[6] Y. Lou, Q. Xue, and C. Chan, “A Broadband Waveguide-to-Microstrip Transition/Power Splitter Using Finline Arrays,” IEEE Microwave and Wireless Components Letters, vol. 17, no. 4, pp.310-312, Apr. 2007.
[7] J.-K. Chuang, R.-Y. Fang, and C.-L. Wang, “Compact and broadband microstrip-to-waveguide transition using antisymmetric tapered probes,” presented at the Electronics Letters, vol. 48, no. 6, pp.332, 2012.

[8] J. Rayas-Sanchez, and Jorge A. Jasso-Urzúa. “EM-Based Optimization of a Single Layer SIW with Microstrip Transitions using Linear Output Space Mapping,” IEEE Transactions on Microwave Theory and Techniques, pp.525-528, Jun 2009.
[9] M. Abdolhamidi, A. Enayati, M. Shahabadi, R. Faraji-Dana, "Wideband single-layer DC-decoupled substrate integrated waveguide (SIW)—to—Microstrip transition using an interdigital configuration", Proc. Asia-Pacific Microw. Conf. (APMC), pp. 1-4, Dec 2007.
[10] Z. Liu, and G.-B. Viao, “A New Transition for SIW and Microstrip Line” Proc. Asia-Pacific Microw. Conf. (APMC), pp. 948-950, Nov 2013.
[11] H. Nam, T.-S. Yun, K.-B. Kim, K.-C. Yoon, J.-C. Lee, "Ku-band transition between microstrip and substrate integrated waveguide (SIW)", Proc. Asia-Pacific Microw. Conf. (APMC), pp. 1-4, Dec 2005.
[12] R.-Y. Fang, C.-L. Wang, "Miniaturized Microstrip-to-Waveguide Transition Using Capacitance-Compensated Broadside-Coupled Microstrip Line", Components Packaging and Manufacturing Technology IEEE Transactions on, vol. 3, no. 9, pp. 1588-1596, Sep.2013.
[13] D. M. Pozar, Microwave engineering. 3rd ed. New York: Wiley, 2005, pp.285-291.

QR CODE