簡易檢索 / 詳目顯示

研究生: 江敏正
Wen-Cheng Chiang
論文名稱: 苯二甲酸酐反應器系統最適化分析
Optimum Analysis of the Phthalic Anhydride Reaction System
指導教授: 周宜雄
Yi-Shyong Chou
口試委員: 錢義隆
I-Lung Chien
王逢盛
Feng-Sheng Wang
學位類別: 碩士
Master
系所名稱: 工程學院 - 化學工程系
Department of Chemical Engineering
論文出版年: 2009
畢業學年度: 97
語文別: 中文
論文頁數: 68
中文關鍵詞: 最適化分析正交排列法苯二甲酸酐反應系統
外文關鍵詞: Optimum Analysis, Orthogonal Collocation, Phthalic Anhydride Reaction System
相關次數: 點閱:218下載:3
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 一般化工程序大多為時間與空間函數的狀態分佈參數系統,本研究所討論的系統為具有高放熱反應的填充床反應系統,該系統模式為一複雜的非線性偏微分方程組,而本研究利用正交排列法將偏微分方程簡化為常微分方程組;正交排列法為解決偏微分方程式中最具方便性者。在了解系統行為後,我們設定了不同的目標函數,以最適化方法中之遺傳演算法來尋找最佳參數值,本研究主要對觸媒孔隙度的大小對於生產成本以及苯二甲酸酐在出口處的產量的影響做探討,希望能降低生產成本,使用較少的觸媒來生產苯二甲酸酐。


    Most chemical engineering processes are process systems with state distributed in time and space. This research is the highly exothermic reaction system model within the packed bed reactor which is a set of complex partial differential equations, and they can be solved by the orthogonal collocation method, which is probably the most widely approach to the solution of the partial differential equation. After comprehending the behavior of the system, we set three different objective functions. We use the method of genetic algorithm one of the optimal methods to search the best optimal values for the objective functions. In this research, we mainly discuss the influence of amount of catalyst porosity to the production costs and the flux of Phthalic Anhydride at exit. In that way, we can produce Phthalic Anhydride by lower production costs.

    目 錄 中英文摘要 I 致謝 ----------------------------------------------------- Ⅲ 目錄 Ⅳ圖表索引 Ⅵ 第一章 緒論 1-1 前言----------------------------------------------------- 1 1-2 研究動機及目的 1 1-3 文獻回顧 2 1-4 本研究之貢獻 5 1-5 本論文之章節安排 5 第二章 鄰苯二甲酸酐生產程序 2-1 前言 6 2-2 苯二甲酸酐生產程序說明 6 2-2-1 系統模式之建立及假設 8 2-2-2 無因次化 12 2-3 穩態模擬分析 15 2-4 動態模擬分析 17 第三章 最適化方法 3-1 前言 20 3-2 傳統演算法 20 3-3 遺傳演算法 23 3-3-1 初始族群大小 25 3-3-2 編碼--------------------------------------------- 25 3-3-3 適應函數----------------------------------------- 25 3-3-4 選擇與複製--------------------------------------- 26 3-3-5 交配--------------------------------------------- 27 3-3-6 突變--------------------------------------------- 28 第四章 苯二甲酸酐生產製程最適化 4-1 靈敏度分析---------------------------------------------- 29 4-2 製程及觸媒孔隙度最適化---------------------------------- 44 第五章 結論 5-1 本研究之結果與討論--------------------------------------- 55 5-2 本研究之未來展望----------------------------------------- 56 符號說明 57 參考文獻 58

    參考文獻:
    1. Anastasov, A.I. Deactivation of an industrial V2O5/TiO2 catalyst for oxidation of o-xylene into phthalic anhydride. Chem. Eng. Process. 2003, 42, 449.
    2. Bond, G. C. Mechanism of the oxidation of 0-xylene to phthalic anhydride. J. Catal. 1989, 116, 531.
    3. Carberry, J. J.; White,D. The role of transport phenomena in catalytic reactor behaviors. Ind. Eng. Chem. 1969, 61, 27.
    4. Calderbank, P. H.; Chandrasekharan ,K. ; Fumagalli, C. The prediction of the performance of packed-bed catalytic reactors in the air-oxidation of o-xylene. Chem. Eng. Sci. 1977, 32, 1435.
    5. Cantú-Paz,E.; Gold berg ,D.E. Are multiple runs of genetic algorithms better than one?. Genetic and Evolutionary Computation — GECCO 2003. 2003. Springer Berlin.
    6. Chou, Y. S.; Wu, C. H. Passivity-based control of the phthalic anhydride fixed-bed reactor. Chem. Eng. Sci. 2007, 62, 1282
    7. Dias, C.R.; Portela ,M. F.; Bond, G.C. Oxidation of o-xylene to phthalic anhydride overV2O5/TiO2 catalysts: part4. Mathematical modeling study and analysis of the reaction network. J. Catal. 1996, 164, 276.
    8. Finlayson, B. A. Nonlinear analysis in chemical engineering, McGraw-Hill Inc., New York. 1980.
    9. Froment, G. F. Fixed bed catalytic reaction. Ind. Eng. Chem. 1967, 59, 18.
    10. Gimeno, M. P.; Gascón, J.; Téllex ,C.; Herguido, J.; Menéndez ,M. Selective oxidation of o-xylene to phthalic anhydride over V2O5/TiO2: Kinetic study in a fluidized bed reactor. Chem. Eng. Process. 2008, 47, 1844.
    11. Herten, J.; Froment, G. F. Kinetics and product distributions in the oxidation of o-xylene in a vanadium pentoxide catalyst. Ind. Eng. Chem. Proc. Des. Dev. 1969, 7, 516.
    12. Hopkins, T. R. A comparison of Galerkin, collocation and the method of lines for partial differential equations. Int. J. Num. Meth. Engng. 1978, 12, 1081.
    13. Hua, X.; Jutan,A. Nonlinear inferential cascade of exothermic fixed bed reactors.AIChE J. 2000, 46, 980.
    14. Papageorgiou, J.N.; Abello ,M.C.; Froment ,G.F. Kinetic modeling of the catalytic oxidation of o- xylene over an industrial V2O5/TiO2 (anatase) catalyst. Appl. Catal. A: Gen. 1994, 120, 17.
    15. Skrzypek, J.; Grzesik ,M.; Galantowicz ,M.; Solinski ,J. Kinetics of the catalytic air oxidation of o-xylene over a commercial V2O5/TiO2 catalyst. Chem. Eng. Sci. 1985, 40, 611.
    16. Stewart, W. E.; Sorensen ,J. P. Process of the European symposium on chemical reaction engineering. Amsterdam. 1972.
    17. Vanhove, D.; Blanchard, J. Catalytic oxidation of o-xylene. J. Catal. 1975, 36, 6.
    18. Wachs, I. E. Molecular engineering of supported metal oxide catalysts. Chem. Eng. Sci. 1990, 45, 2561.
    19. Wainwright, M. S.; Foster, N. R. Catalysts kinetics and reactor design in phthalic anhydride syntheses. Catal. Rev. Sci. Eng. 1979, 19, 211.
    20. Yabrov, A. A.; Ivanov, A. A. Response studies of the mechanism of o-xylene oxidation over a vanadium-titanium oxide catalyst. React. Kinet. Catal. Lett. 1980, 14, 347.

    QR CODE