簡易檢索 / 詳目顯示

研究生: 蕭琬婷
Wan-ting Hsiao
論文名稱: 氣相生長奈米碳纖在質子交換膜燃料電池電極觸媒之應用
Vapor-Grown Carbon nano-Fiber as electrocatalyst support for Proton Exchange Membrane Fuel Cell
指導教授: 林舜天
Shun-Tian Lin
黃炳照
Bing-Joe Hwang
口試委員: 盧敏彥
Man-Yin Lo
學位類別: 碩士
Master
系所名稱: 工程學院 - 材料科學與工程系
Department of Materials Science and Engineering
論文出版年: 2007
畢業學年度: 95
語文別: 中文
論文頁數: 93
中文關鍵詞: 直接甲醇燃料電池陰極觸媒氣相生長奈米碳纖
外文關鍵詞: direct methanol fuel cell (DMFC), cathode catalyst, vapor -grown carbon nano-fiber
相關次數: 點閱:266下載:1
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

目前燃料電池之商業觸媒皆使用碳黑為載體,於鉑金屬的高使用量下,即使觸媒效率高,成本居高不下卻是燃料電池難以商業化之主要原因。本研究以高導電性氣相生長奈米碳纖(Vapor-grown carbon nano-fiber)取代目前商業碳黑為載體,製備甲醇燃料電池中的陰極觸媒。目的為藉氣相生長奈米碳纖高導電性的優點,可以提升鉑金屬之電子傳遞能力及鉑金屬的使用率,進而降低鉑金屬使用量以降低成本,達到商業化之目標。
本研究中首先以煅燒法去除碳纖內有機雜質,並以不同改質劑建立碳纖之改質技術,有效增加碳纖之親水性,並以含浸法及膠體化法合成觸媒,篩選出觸媒合成關鍵要素。兩種合成方法中尤以膠體化法為主要合成方法,其容易掌握觸媒合成關鍵之優點,有別於傳統含浸法鉑顆粒聚集及顆粒不均之缺點,有利於工業上大量生產。成功地以高導電度碳纖取代傳統碳黑,降低鉑金屬的使用量,合成出高於商業觸媒效率3倍之甲醇燃料電池。


One of the critical issues in the commercialization of Proton exchange membrane fuel cell (PEMFC) is the performance of the electrode catalyst, both for the anodic conversion of fuel and the cathodic conversion of oxygen. Even though the use of Pt-based catalyst resulted in superior fuel cell performance, the very expensive nature of Pt catalyst hindered the commercialization of PEMFC. New substrates for Pt catalyst are being sought to replace the widely used carbon black substrate, in order to enhance the efficiency of Pt and, accordingly, reduce the cost of catalyst. The properties of substrates become the vital parameters in determining the performances of the catalyst of interest. The present study focuses on the utilization of vapor-grown carbon nano-fiber (VGCNF) as the substrate for the preparation of Pt-based cathode catalyst (Pt/VGCNF), intended to be used in direct methanol fuel cell (DMFC). VGNCF with a high electrical conductivity and a high aspect ratio posseses the potential to enhance the performances of the Pt-based cathode catalyst. In this study, the effects of diameter of VGCNF, VGCNF modification method, Pt deposition method, and VGNCF activation method were investigated in order to enhance the performance of Pt/VGCNF catalysts. The optimized Pt/VGCNF catalyst prepared in this study had a much higher activity than the commercial Johnson Matthey catalyst.

目錄 摘要 I Abstract II 誌謝 III 目錄 V 圖目錄 VIII 表目錄 XII 第一章 緒論 1 1.1燃料電池 1 1.2燃料電池種類 1 1.3 直接甲醇燃料電池(DMFC) 6 1.4 薄膜電極組(Membrane Electrode Assembly) 9 第二章 文獻回顧 11 2.1碳載體的改質 15 2.2觸媒合成方法 18 2.3研究目的與方法 22 第三章 實驗設備與方法 23 3.1 藥品 23 3.2 陰極觸媒的合成與鑑定 .24 3.2.1碳纖表面處理 24 3.2.2 Pt / VGCNF觸媒合成方法 30 3.2.2.1含浸法(Impregnation) 30 3.2.2.2膠體化法(Colloidal Method) 31 3.3改質碳載體及陰極觸媒物化性分析 33 3.3.1觸媒BET比表面積及孔洞分佈分析 33 3.3.2程式升溫脫附法(TPD) 34 3.3.3穿透式電子顯微鏡(TEM) 35 3.3.4 X光繞射檢測分析(XRD) 35 3.3.5熱重分析儀(TGA) 36 3.3.6紫外光-可見光(UV-Vis)光譜分析 36 3.3.7觸媒氧分子還原反應(ORR)活性測試 37 3.3.7.1氫標準參考電極(RHE)之製備 37 3.3.7.2 觸媒電極製備 39 3.3.7.3 ORR活性測試步驟 38 3.3.7.4導電度測試 38 3.3.7.5活性面積測試 39 第四章 結果與討論 40 4.1碳纖純化處理 43 4.2碳纖表面改質及鑑定 45 4.2.1程序升溫脫附程序(TPD)鑑定官能基 45 4.2.2比較不同改質劑對碳纖性質的影響 47 4.2.3比較不同管徑碳纖對官能基的影響 50 4.3觸媒合成方法 55 4.3.1含浸法(Impregnation) 55 4.3.1.1含氧官能基數量對粒徑之影響 55 4.3.1.2粒徑大小與活性的關係 59 4.3.1.3不同還原溫度對粒徑之影響 60 4.3.1.4碳纖之高導電度的特性對於觸媒活性的影響 62 4.3.1.5不同管徑對觸媒之影響 64 4.3.2膠體化合成法(Colloidal) 65 4.3.2.1碳纖的分散性 66 4.3.2.2膠體化法(Colloidal)之合成要素 69 4.3.2.2.1熱處理 73 4.3.2.2.2添加導電材 75 4.3.3不同合成方法的比較 79 第五章 結論 81 參考文獻 83

參考文獻
1. Carrette, L., Friedrich, K. A., Stimming, U., “Fuel Cells - Fundamentals and Applications” , Fuel Cells , Vol.1, pp.5(2001).
2. Sopian, K., Daud, W. R. W., ”Challenges and future developments in proton exchange membrane fuel cells” , Renewable Energy , Vol.31, pp.719-727(2006).
3. Thomas, S., Zalbowitz, M., Fuel Cells - Green power , Los Alamos National Laboratory, New Mexico, (1999).
4. Vishnyakov, V. M., “Proton exchange membrane fuel cells” , Vacuum , Vol.80, pp.1053-1065(2006).
5. http://www.fuelcelltoday.com/index/0,1571,,00.html.
6. Bruijn, F. D., “The current status of fuel cell technology for mobile and stationary applications” , Green Chemisty , Vol.7, pp.132-150(2005).
7. http://www.matthey.com/index.htm.
8. Carlson, E., Maloney, R., Kopf, P., Rancatore, R., Lasher, S., Yang, Y., “2004 Hydrogen and Fuel Cells Merit Meeting” , Philadelphia, PA, May pp.24-27, (2004).
9. Kunchan, L., Zhang, J., Wang, H., Wilkinson, D. P., “ Progress in the synthesis of carbon nanotube- and nanofiber-supported Pt electrocatalysts for PEM fuel cell catalysis” , Journal of Applied Electrochemistry , Vol.36, pp.507-522(2006).
10. Antolini, E., “Review formation, microstructural characteristics and stability of carbon supported platinum catalysts for low temperature fuel cells” , Journal of Materials Science , Vol.38, pp.2995-3005(2003).
11. Wasmus, S., Kuver, A., “Methanol oxidation and direct methanol fuel cells: a selective review” , Journal of Electroanalytical Chemistry , Vol.461, pp.14-31(1999).
12. Hogarth, M. P., Ralph, T. R., “Catalyst for low temperature fuel cells” , Platinum Metals Review , Vol.46, pp.146-164(2002).
13. Li , W., Liang, C., Qiu, J., Zhou, W., Han, H., Weia, Z., Suna, G., Xina, Q., ” Carbon nanotubes as support for cathode catalyst of a direct methanol fuel cell” , Carbon , Vol.40, pp.787-803(2002).
14. Li, W., Liang, C., Zhou, W., Qiu, J., Zhou, Z., Sun, G., Xina, Q., “Preparation and characterization of multiwalled Carbon nanotube-supported platinum for cathode catalysts of direct methanol Fuel cells” , The Journal of Physical Chemistry B , Vol.107, pp.6292-6299(2003).
15. Wang, X., Li, W., Chen, Z., Waje, M., Yan, Y., “Durability investigation of carbon nanotube as catalyst support for proton exchange membrane fuel cell” , Journal of Power Sources , Vol.158, pp.154-159(2006).
16. 范月英、成會明、蘇革、魏永良、沈祖洪,「氣相生長奈米碳纖維的研究進展」,新型碳材料,第14卷,第2期,1999.
17. McKenzie, S., “Columbian Chemicals: Status of Carbon
Nanotechnology and Fuel Cell Electrocatalysts” , Dayton(2006).
18. Tibbetts, G. G., Lake, M. L., Strong, K. L., Rice, B. P., ”A review of the fabrication and properties of vapor-grown carbon nanofiber/polymer composites” , Composites Science and Technology , Vol.67, 1709-1718(2007).
19. Chan, L. H., Hong, K. H., Xiao, D. Q., Lin, T. C., Lai S. H., Hsieh, W. J., Shih, H. C., ”Resolution of the binding configuration in nitrogen-doped carbon nanotubes” , Physical Review B , Vol.70, pp. 125408(2004).
20. Cui, H., Zhou, O., Stoner, B. R., “Deposition of aligned bamboo- like carbon nanotubes via microwave plasma enhanced chemical vapor deposition” , Journal of Applied Physics , Vol.88, No.10, pp.6072-6074(2000).
21. Yoo, J. B., Hana, J. H., Choia, S. H., Lee, T. Y., Parka, C. Y., Jeongb, T. W., Lee, J. H., Yu, S., Parkc, G., Yi, W. K., Kimd, H. S., Baikd, Y. J., Kim, J. M., ”Emission characteristics of boron nitride coated carbon nanotubes” , Physica B , Vol.323, pp.180-181(2002).
22. Wang, C. H., Shih, H. C., Tsai, Y. T., Dub, H. Y., Chenc, L. C., Chenc, K. H., “High methanol oxidation activity of electrocatalysts supported by directly grown nitrogen- containing carbon nanotubes on carbon cloth” , Electrochimica Acta , Vol.52, pp.1612-1617(2006).
23. Hara, M., Yoshida, T., Takagaki, A., Takata, T., Kondo, J. N., Hayashi, S., Domen, K., “A Carbon Material as a Strong Protonic Acid“ , Angewandte Chemie International Edition , Vol.43, pp.2955-2958(2004).
24. Li , X., Hsing, I. M., “The effect of the Pt deposition method and the support on Pt dispersion on carbon nanotubes” , Electrochimica Acta , pp.9(2006).
25. Lordi, V., Yao, N., Wei, J., Yu, R., Chen, L., “Method for supporting platinum on single walled carbon nanotube for a selective hydrogenation catalyst” , Chemistry Materials , Vol.13, pp.733-737(2001).
26. Figueiredo, J. L., Pereira, M. F. R., Freias, M. M. A., Orfao, J. J. M, “Modification of the surface chemistry of activated carbons” , Carbon , Vol.37, pp.1379-1389(1999).
27. Kongkannand, A., Vinodgopal, K., Kuwabata, S., Kamat, P. V., “Highly dispersed Pt catalysts on Single-walled carbon nanotubes and their role in methanol oxidation” , The Journal of Physical Chemistry B , Vol.110, pp.16185(2006).
28. O’Connell, M. J., Boul, P., Ericson, L. M., Huffman, Y. W., Haroz, E., Kuper, C., Tour J., “Reversible water-solubilization of single-walled carbon nanotubes by polymer wrapping” , Chemical Physics Letters , Vol.342, pp.265-271(2001).
29. Olek, M., Hilgendorff , M., Giersig, M., “A simple route for the attachment of colloidal nanocrystals to noncovalently modified multiwalled carbon nanotubes” , Colloids and Surfaces A , Vol.292, pp.83-85(2007).
30. Zhao, X., Lin, W., Song, N., Chen, X., Fan, X., Zhou, Q., “Water soluble multi-walled carbon nanotubes prepared via nitroxide-mediated radical polymerization” , Journal of Materials Chemistry , Vol.16, pp.4619-4625(2006).
31. Liu, J., Casavant, M. J., Cox, M., Walters, D. A., Boul, P., Lu, W., Rimberg, A. J., Smith, K. A., Colbert, D. T., Smalley, R. E., “Controlled deposition of individual single-walled carbon nanotubes on chemically functionalized templates” , Chemical Physics Letters , Vol.303, pp.125-129(1999).
32. F. Pinna, “Supported Metal Catalysts Preparation” , Catalysis Today , Vol.41, NO.1, pp.129-137(1998).
33. Jackson, S. D., Willis, J., Mclellan, G. D., Webb, G., Keegan, M. B. T., Moyes, R.B., Simpson, S., Wells, P. B., Whyman, R., “Supported
metal catalysts: Preparation, characterization, and function” , Journal of catalysis , Vol.139, pp.191(1993).
34. Perego, C., Villa, P., “Catalyst preparation methods” , Cataysis Today , Vol.34, pp.281(1997).
35. Chien, C. C., Jeng, K. T., “Effective preparation of carbon nanotube-supported Pt-Ru electrocatalysts” , Materials Chemistry and Physics , Vol.99, pp.80-87(2006).
36. Li, W., Liang, C., Zhou, W., Qiu, J., Li, H., Sun, G., Xin, Q., “Homogeneous and controllable Pt particles deposited on multi-wall carbon nanotubes as cathode catalyst for direct methanol fuel cells” , Carbon , Vol.42, pp.423-460(2004).
37. Rajalakshmib, N., Ryub, H., Shaijumona, M. M., Ramaprabhua, S., ” Performance of polymer electrolyte membrane fuel cells with carbon nanotubes as oxygen reduction catalyst support material” , Journal of Power Sources , Vol.140, pp.250-257(2005).
38. Starz, K. A., Auer, A., Lehmann, T., Zuber, R., “Characterization of platinum-based electrocatalysts for mobile PEMFC applications” , Journal Power Sources , Vol.84, pp.167(1999).
39. Wang, Y., Ren, J., Deng, K., Gui, L., Tang, T., “Preparation of Tractable Platinum, Rhodium, and Ruthenium Nanoclusters with Small Particle Size in Organic Media” , Chemistry Materials , Vol.12, pp.1622-1627( 2000).
40. Bai, Y., Wu, C., Wu, F., Yi, B., “Carbon-supported platinum catalysts for on-site hydrogen generation from NaBH4 solution” , Materials Letters , Vol.60, pp.2236-2239(2006).
41. Zhou, Z., Zhou, Wang, W., S., Wang, G., Jiang, L., Li, H., Sun, G., ”Preparation of highly active 40 wt%Pt/C cathode electrocatalysts for DMFC via different routes” , Catalyst Today , Vol.93, pp.523-528(2004).
42. Peuckert, M., Yoneda, T., Dalla Betta, R. A., Boudart M., “Oxygen reduction on small supported platinum particle” , The Electrochemical Society , Vol.133, No.5, pp.944-947(1986).
43. Finegan, I. C., Tibbetts, G. G., “Electrical conductivity of vapor-grown carbon fiber/thermoplastic composites” , Journal Materials Research , Vol.16, No.6, pp.1668-1674(2001).
44. Ci, L., Wei, J., Wei, B., Liang, J., Xu, C., Wu, D., “Carbon nanofibers and single-walled carbon nanotubes prepared by the floating catalyst method” , Carbon , Vol.39, pp.329-335(2001).
45. Banks, C. E., Crossley, A., Salter, C., Wilkins, S. J., Conpton, R. G., “Carbon nanotubes contain metal impurities which are responsible for the “ electrocatalysis” seen at some nanotube-modified electrodes” , Angewandte Chemie International Edition , Vol.45, pp.2533-2537(2006).
46. Liu, Z., Lin, X., Lee, J. Y., Zhang, W., Han, M., Gan, L. M., “Preparation and Characterization of Platinum-Based Electrocatalysts on Multiwalled Carbon Nanotubes for Proton Exchange Membrane Fuel Cells” , Electrochimica Acta , Vol.52, pp.1612-1617(2006).
47. Wang, M., Woo, K.D., Kim, D. K., “Preparation of Pt nanoparticles on carbon nanotubes by hydrothermal method” , Energy coversion and management , Vol.47, pp.3235-3240(2006).
48. Boehm, H. P., “Surface oxides on carbon and analysis: a critical assessment” , Carbon , Vol.40, pp.145(2002).
49. Castilla, C. M., Marin, F. C., Maldonado-hodar, F. J., Utrilla, J. R., “Effects of non-oxidant acid treatment carbon with very low ash content” , Carbon , Vol.36, pp.145(1998).
50. U. A. Paulus, T. J. Schmidt, H. A. Gasteiger, R. J. Behem, “Oxygen reduction on a thin-film rotating ring-disk electrode study”, Journal of Electroanalytical Chemistry , Vol.495, pp.134(2001).
51. W. Li, X. Wang, Z. Chen, M. Waje, Y. Yan, “Carbon nanotube film by filtration as cathode catalyst support for proton-exchange membrane fuel cell”, Langmuir , Vol.21, pp.9386(2005).
52. http://en.wikipedia.org/wiki/Dimethylformamide
53. http://www.sigmaaldrich.com/catalog/search/ProductDetail/Aldrich

無法下載圖示 全文公開日期 2012/08/07 (校內網路)
全文公開日期 本全文未授權公開 (校外網路)
全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
QR CODE