Basic Search / Detailed Display

Author: 鄭詩雅
Shih-Ya Cheng
Thesis Title: 最小化服務品質違反機率之5G多資源網路切片
5G Multi-Resource Network Slicing to Minimize QoS Violation Probability
Advisor: 賴源正
Yuan-Cheng Lai
Committee: 賴源正
Yuan-Cheng Lai
陳彥宏
Yen-Hung Chen
黃政嘉
Jhen-Gjia huang
Degree: 碩士
Master
Department: 管理學院 - 資訊管理系
Department of Information Management
Thesis Publication Year: 2021
Graduation Academic Year: 109
Language: 中文
Pages: 36
Keywords (in Chinese): 網路切片多資源分配QoS違反機率
Keywords (in other languages): network slicing, multi-resource allocation, QoS violation probability
Reference times: Clicks: 282Downloads: 0
Share:
School Collection Retrieve National Library Collection Retrieve Error Report
  • 5G網路縮短了傳輸的時間,帶給使用者更高速且低延遲的服務。而在5G網路架構下,很多服務會包括通訊及運算兩種資源需求,因此妥善的多資源配置是提升使用者服務品質(Quality of Services, QoS)很重要的因素,而網路切片技術可依照各服務需求單獨分配其所需的資源量。目前大多數的論文都是以最小化平均延遲做為網路切片的目標,然而最小化平均延遲並無法讓使用者得到最好的QoS,因此針對各種應用的不同QoS需求,此論文中提出了一種以達成最小QoS違反機率為目標的多資源切片方法,稱之為Network Slicing with Minimum QoS Violation Probability (NS-MQV),此方法概念為計算各服務的延遲分佈,並使用各服務流量之機率來獲得整體的QoS違反機率,然後使用次梯度搜尋演算法去找尋最佳的資源配置,以得出最小QoS違反機率。研究結果表明NS-MQV在預設環境下時,相較於無做資源切割和均等切割資源的方法,分別可改進80.57%和90.00%的QoS違反機率。同時隨著封包到達率增加,NS-MQV之QoS違反機率會有較小的上升趨勢,因而產生更好的改進。


    5G網路縮短了傳輸的時間,帶給使用者更高速且低延遲的服務。而在5G網路架構下,很多服務會包括通訊及運算兩種資源需求,因此妥善的多資源配置是提升使用者服務品質(Quality of Services, QoS)很重要的因素,而網路切片技術可依照各服務需求單獨分配其所需的資源量。目前大多數的論文都是以最小化平均延遲做為網路切片的目標,然而最小化平均延遲並無法讓使用者得到最好的QoS,因此針對各種應用的不同QoS需求,此論文中提出了一種以達成最小QoS違反機率為目標的多資源切片方法,稱之為Network Slicing with Minimum QoS Violation Probability (NS-MQV),此方法概念為計算各服務的延遲分佈,並使用各服務流量之機率來獲得整體的QoS違反機率,然後使用次梯度搜尋演算法去找尋最佳的資源配置,以得出最小QoS違反機率。研究結果表明NS-MQV在預設環境下時,相較於無做資源切割和均等切割資源的方法,分別可改進80.57%和90.00%的QoS違反機率。同時隨著封包到達率增加,NS-MQV之QoS違反機率會有較小的上升趨勢,因而產生更好的改進。

    摘要 I Abstract IV 目錄 V 圖目錄 VII 表目錄 VIII 第壹章 緒論 1 第貳章 相關研究 4 一、 關於網路切片的文獻 4 二、 多個M/M/1延遲分佈 7 第參章 系統與問題陳述 9 一、 系統架構 9 二、 系統模型 11 三、 問題陳述 11 第肆章 研究方法 13 一、 延遲分佈 13 二、 凸函數佐證 14 三、 NS-MQV演算法 15 四、 最佳切片分配模組 16 第伍章 實驗與分析 21 一、 模擬環境與參數 21 二、 NS-MQV與其他切割方法的效能比較 22 三、 各服務資源切割之效益比較 24 四、 切割計算資源與傳輸資源的效益比較 26 五、 切割上傳頻寬與下載頻寬的效益比較 27 六、 頻寬資源對於切割的效能影響 29 七、 Step參數對於模組收斂時間與QoS違反機率的影響 30 第陸章 結論與未來展望 32 參考文獻 33

    [1] H. Zhang, N. Liu, X. Chu, K. Long, A.-H. Aghvami, and V. C. M. Leung, "Network Slicing Based 5G and Future Mobile Networks: Mobility, Resource Management, and Challenges," IEEE Communications Magazine, vol. 55, no. 8, pp. 138-145, Aug. 2017.
    [2] Y. Mao, C. You, J. Zhang, K. Huang, and K. B. Letaief, "A Survey on Mobile Edge Computing: The Communication Perspective," IEEE Communications Surveys & Tutorials, vol. 19, no. 4, pp. 2322-2358, 4th Quart. 2017 .
    [3] P. Popovski, K. F. Trillingsgaard, O. Simeone, and G. Durisi, "5G Wireless Network Slicing for eMBB, URLLC, and mMTC: A Communication-Theoretic View," IEEE Access, vol. 6, pp. 55765-55779, Oct. 2018.
    [4] X. Foukas, G. Patounas, A. Elmokashfi, and M. K. Marina, "Network Slicing in 5G: Survey and Challenges," IEEE Communications Magazine, vol. 55, no. 5, pp. 94-100, May 2017.
    [5] A. Nedic and A. Ozdaglar, "Distributed Subgradient Methods for Multi-Agent Optimization," IEEE Transactions on Automatic Control, vol. 54, no. 1, pp. 48-61, Jan. 2009.
    [6] G. Wang, G. Feng, S. Qin, R. Wen, and S. Sun, "Optimizing Network Slice Dimensioning via Resource Pricing," IEEE Access, vol. 7, pp. 30331-30343, Mar. 2019.
    [7] G. Wang, G. Feng, W. Tan, S. Qin, R. Wen, and S. Sun, "Resource Allocation for Network Slices in 5G with Network Resource Pricing," IEEE Global Communications Conference, pp. 1-6, Dec. 2017.
    [8] M. Jiang, M. Condoluci, and T. Mahmoodi, "Network slicing in 5G: An auction-based model," IEEE International Conference on Communications, pp. 1-6, May. 2017.
    [9] Y. Ren, A. Guo, C. Song, and Y. Xing, "Dynamic Resource Allocation Scheme and Deep Deterministic Policy Gradient-Based Mobile Edge Computing Slices System," IEEE Access, vol. 9, pp. 86062-86073, Jun. 2021.
    [10] Y. K. Tun, M. Alsenwi, S. R. Pandey, C. W. Zaw, and C. S. Hong, "Energy Efficient Multi-Tenant Resource Slicing in Virtualized Multi-Access Edge Computing," Asia-Pacific Network Operations and Management Symposium, pp. 1-4, Sept. 2019.
    [11] J. Zhou, W. Zhao, and S. Chen, "Dynamic Network Slice Scaling Assisted by Prediction in 5G Network," IEEE Access, vol. 8, pp. 133700-133712, July. 2020.
    [12] C. Mei, J. Liu, J. Li, L. Zhang and, M. Shao, "5G network slices embedding with sharable virtual network functions," Journal of Communications and Networks, vol. 22, no. 5, pp. 415-427, Oct. 2020.
    [13] F. Fossati, S. Moretti, and S. Secci, "Multi-Resource Allocation for Network Slicing under Service Level Agreements," International Conference on Networks of the Future, pp. 48-53, Oct. 2019.
    [14] M. Leconte, G. S. Paschos, P. Mertikopoulos, and U. C. Kozat, "A Resource Allocation Framework for Network Slicing," IEEE Conference on Computer Communications, pp. 2177-2185, Apr. 2018.
    [15] J. Zheng and G. de Veciana, "Elastic Multi-resource Network Slicing: Can Protection Lead to Improved Performance?" International Symposium on Modeling and Optimization in Mobile, Ad Hoc, and Wireless Networks, pp. 1-8, Jun. 2019.
    [16] F. Fossati, S. Moretti, P. Perny, and S. Secci, "Multi-Resource Allocation for Network Slicing," IEEE/ACM Transactions on Networking, vol. 28, no. 3, pp. 1311-1324, June 2020.
    [17] D. Ginthör, R. Guillaume, M. Schüngel, and H. D. Schotten, "5G RAN Slicing for Deterministic Traffic," IEEE Wireless Communications and Networking Conference, pp. 1-6, Mar. 2021.
    [18] Y. K. Tun, D. H. Kim, M. Alsenwi, N. H. Tran, Z. Han, and C. S. Hong, "Energy Efficient Communication and Computation Resource Slicing for eMBB and URLLC Coexistence in 5G and Beyond," IEEE Access, vol. 8, pp. 136024-136035, Jul. 2020.
    [19] P. K. Korrai, E. Lagunas, S. K. Sharma, S. Chatzinotas, and B. Ottersten, "Slicing Based Resource Allocation for Multiplexing of eMBB and URLLC Services in 5G Wireless Networks," International Workshop on Computer Aided Modeling and Design of Communication Links and Networks, pp. 1-5, Sept. 2019.
    [20] Y. D. Lin, Y. C. Lai, and R. H. Hwang, "Offloading Probability Optimization with Delay Distribution in the Three-tier Cloud, Edge, and Fog Systems."
    [21] G. Wang, L. Wang, J. Chuan, W. Xie, H. Zhang, and A. Fei, "LRA-3C: Learning Based Resource Allocation for Communication-Computing-Caching Systems," International Conference on Internet of Things and IEEE Green Computing and Communications and IEEE Cyber, Physical and Social Computing and IEEE Smart Data, pp. 828-833, Jul. 2019.
    [22] D. Nojima, Y. Katsumata, T. Shimojo, Y. Morihiro, T. Asai, A. Yamada, and S. Iwashina, "Resource Isolation in RAN Part While Utilizing Ordinary Scheduling Algorithm for Network Slicing," Vehicular Technology Conference, pp. 1-5, Jun. 2018.
    [23] H. T. Chien, Y. D. Lin, Y. C. Lai, and C. T. Wang, "End-to-End Slicing with Optimized Communication and Computing Resource Allocation in Multi-Tenant 5G Systems," IEEE Transactions on Vehicular Technology, vol. 69, no. 2, pp. 2079-2091, Feb. 2020.

    無法下載圖示 Full text public date 2031/08/21 (Intranet public)
    Full text public date This full text is not authorized to be published. (Internet public)
    Full text public date This full text is not authorized to be published. (National library)
    QR CODE