簡易檢索 / 詳目顯示

研究生: 金小飛
Septianda Angelica
論文名稱: Digital Twin Design of a Machining Tool for Real-Time Monitoring
Digital Twin Design of a Machining Tool for Real-Time Monitoring
指導教授: 王孔政
Kung-Jeng Wang
口試委員: 何秀青
Mei HC Ho
朱宇倩
Yu-Qian Zhu
學位類別: 碩士
Master
系所名稱: 管理學院 - 管理學院MBA
School of Management International (MBA)
論文出版年: 2020
畢業學年度: 106
語文別: 英文
論文頁數: 44
中文關鍵詞: 數位孿生機台監控戰情中心智慧製造
外文關鍵詞: Digital Twin, Machine Monitoring, Dashboard System, Smart Manufacturing
相關次數: 點閱:297下載:3
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

因應整合切割工具機和即時製造之決策,數位孿生是一項核心技術。 利用數位孿生可以串聯多個獨立的工具機,形成相互連結的系統,提供管理者即時監控機台狀態。本研究提出一套數位孿生之架構,可用於監控僅具低階聯網之傳統工具機, 並以模切機(die cutting machine)為例,評估所提出架構的有效性。此外,本研究也建立戰情中心用以即時控制生產情況。其中,戰情中心主要包含三項功能:即時顯示機台狀況、整體設備之運作效率以及進行訂單之排程。綜言之,本案主要的貢獻為提出一套數位孿生架構,並可應用在聯網技術較低之工具機上,仍可獲致工業物聯網級之智慧製造能力。


Digital Twin (DT) is a core technology that enables integration between physical cutting machines and real-time manufacturing decisions. DT connects isolated machines to an interconnected system and monitors machine conditions in real-time. In this paper, a DT framework is proposed for the real-time monitoring of conventional machines. This paper presents a DT design of a die cutting machine. A dashboard-based mission center is created to display the real-time condition of the machine. The mission center consists of three main functions: real-time machine monitoring, overall equipment effectiveness, and order scheduling. The present paper proposes a DT framework consisting of conventional machine structure but still has a tolerant level of industrial Internet of things capability.

摘要 iii Abstract iv Acknowledgement v Content of Table vii Content of Figure viii Chapter 1 Introduction 1 1.1 Research Background 1 1.2 Research Objective 2 1.3 Thesis Structure 3 Chapter 2 Literature Review 4 2.1 Digital Twin 4 2.2 Digital dashboard 8 2.3 Overall equipment effectiveness 9 Chapter 3 Method 11 3.1 Proposed DT framework 11 3.2 Data capturing module 11 3.3 DT intelligent module 15 3.4 DT data module 16 Chapter 4 Experiment and result 18 4.1 Target machine 18 4.2 DT intelligent module 21 4.3 DT data module 24 Chapter 5 Conclusion 29 Appendix. Target machine specification 30 References 31

1. Aivaliotis, P., Georgoulias, K., & Chryssolouris, G. (2019). The use of Digital Twin for predictive maintenance in manufacturing. International Journal of Computer Integrated Manufacturing, 32, 1-14.
2. Allen, J. F. (1983). Maintaining knowledge about temporal intervals. Communications of the ACM 26.
3. Atluru, S., Huang, S. H., & Snyder, J. P. (2012). A smart machine supervisory system framework. The International Journal of Advanced Manufacturing Technology, 58(5-8), 563-572.
4. Bao, J., Guo, D., Li, J., & Zhang, J. (2019). The modelling and operations for the digital twin in the context of manufacturing. Enterprise Information Systems, 13(4), 534-556.
5. Chi, E. H. H. (2000, October). A taxonomy of visualization techniques using the data state reference model. In IEEE Symposium on Information Visualization 2000. INFOVIS 2000. Proceedings (pp. 69-75). IEEE.
6. Delbrügger, T., & Rossmann, J. (2019). Representing adaptation options in experimentable digital twins of production systems. International Journal of Computer Integrated Manufacturing, 1-14.
7. De Ron, A. J., & Rooda, J. E. (2005). Equipment effectiveness: OEE revisited. IEEE Transactions on Semiconductor Manufacturing, 18(1), 190-196.
8. Dinardo, G., Fabbiano, L., & Vacca, G. (2018). A smart and intuitive machine condition monitoring in the Industry 4.0 scenario. Measurement, 126, 1-12.
9. Ding, K., Chan, F. T., Zhang, X., Zhou, G., & Zhang, F. (2019). Defining a digital twin-based cyber-physical production system for autonomous manufacturing in smart shop floors. International Journal of Production Research, 57, 1-20.
10. Edrington, B., Zhao, B., Hansel, A., Mori, M., & Fujishima, M. (2014). Machine monitoring system based on MTConnect technology. Procedia Cirp, 22, 92-97.
11. Exor (2019). Jmobile. Retrieved from https://www.exorint.com/en/software/jmobile
12. Frank, A. G., Dalenogare, L. S., & Ayala, N. F. (2019). Industry 4.0 technologies: Implementation patterns in manufacturing companies. International Journal of Production Economics, 210, 15-26.
13. Hedman, R., Subramaniyan, M., & Almström, P. (2016). Analysis of critical factors for automatic measurement of OEE. Procedia CIRP, 57, 128-133.
14. Jain, S., Lechevalier, D., & Narayanan, A. (2017, December). Towards smart manufacturing with virtual factory and data analytics. In 2017 Winter Simulation Conference (WSC) (pp. 3018-3029). IEEE.
15. Jeong, K. Y., & Phillips, D. T. (2001). Operational efficiency and effectiveness measurement. International Journal of Operations & Production Management.
16. J-Mobile (2019a) http://www.jmobile.net/what-is-jmobile.html
17. J-Mobile (2019b) https://www.exorint.com/en/software/jmobile
18. Kunath, M., & Winkler, H. (2018). Integrating the Digital Twin of the manufacturing system into a decision support system for improving the order management process. Procedia CIRP, 72, 225-231.
19. Liau, Y., Lee, H., & Ryu, K. (2018, March). Digital Twin concept for smart injection molding. In IOP Conference Series: Materials Science and Engineering (Vol. 324, No. 1, p. 012077). IOP Publishing.
20. Liff, S., & Posey, P. A. (2004). Seeing is believing: how the new art of visual management can boost performance throughout your organization. AMACOM/American Management Association.
21. Liu, C., Vengayil, H., Zhong, R. Y., & Xu, X. (2018). A systematic development method for cyber-physical machine tools. Journal of Manufacturing Systems, 48, 13-24.
22. Liu, J., Zhou, H., Liu, X., Tian, G., Wu, M., Cao, L., & Wang, W. (2019). Dynamic Evaluation Method of Machining Process Planning Based on Digital Twin. IEEE Access, 7, 19312-19323.
23. Lu, Y., Liu, C., Kevin, I., Wang, K., Huang, H., & Xu, X. (2020). Digital Twin-driven smart manufacturing: Connotation, reference model, applications and research issues. Robotics and Computer-Integrated Manufacturing, 61, 101837.
24. Luo, W., Hu, T., Zhang, C., & Wei, Y. (2019). Digital twin for CNC machine tool: modeling and using strategy. Journal of Ambient Intelligence and Humanized Computing, 10(3), 1129-1140.
25. Okoh, C., Roy, R., & Mehnen, J. (2017). Maintenance informatics dashboard design for through-life engineering services. Procedia CIRP, 59, 166-171.
26. Pauwels, K., Ambler, T., Clark, B. H., LaPointe, P., Reibstein, D., Skiera, B., ... & Wiesel, T. (2009). Dashboards as a service: why, what, how, and what research is needed?. Journal of Service Research, 12(2), 175-189.
27. Qi, Q., & Tao, F. (2018). Digital twin and big data towards smart manufacturing and industry 4.0: 360 degree comparison. IEEE Access, 6, 3585-3593.
28. Schluse, M., Priggemeyer, M., Atorf, L., & Rossmann, J. (2018). Experimentable digital twins—Streamlining simulation-based systems engineering for industry 4.0. IEEE Transactions on Industrial Informatics, 14(4), 1722-1731.
29. Schroeder, G. N., Steinmetz, C., Pereira, C. E., & Espindola, D. B. (2016). Digital twin data modeling with automationml and a communication methodology for data exchange. IFAC-PapersOnLine, 49(30), 12-17.
30. Seiichi Nakajima. (1988). Introduction to TPM: total productive maintenance. Productivity Press.
31. Stark, R., Fresemann, C., & Lindow, K. (2019). Development and operation of Digital Twins for technical systems and services. CIRP Annals.
32. SQL4Automation (2019) https://www.sql4automation.com/en/home/index.php
33. Tao, F., Liu, W., Liu, J., Liu, X., Liu, Q., Qu, T., ... & Xiang, F. (2018). Digital twin and its potential application exploration. International Journal of Computer Integrated Manufacturing, 24(1), 1-18.
34. Tao, F., Sui, F., Liu, A., Qi, Q., Zhang, M., Song, B., ... & Nee, A. Y. C. (2019). Digital twin-driven product design framework. International Journal of Production Research, 57(12), 3935-3953.
35. Tao, F., Zhang, H., Liu, A., & Nee, A. Y. (2018). Digital twin in industry: state-of-the-art. IEEE Transactions on Industrial Informatics, 15(4), 2405-2415.
36. Tao, F., Zhang, M., Cheng, J., & Qi, Q. (2017). Digital twin workshop: a new paradigm for future workshop. International Journal of Computer Integrated Manufacturing, 23(1), 1-9.
37. Tchana, Y., Ducellier, G., & Remy, S. (2019). Designing a unique Digital Twin for linear infrastructures lifecycle management. Procedia CIRP, 84, 545-549.
38 V-SFT (2019) https://monitouch.fujielectric.com/site/vsft-t/
39. Vilarinho, S., Lopes, I., & Sousa, S. (2017). Design procedure to develop dashboards aimed at improving the performance of productive equipment and processes. Procedia Manufacturing, 11, 1634-1641.
40. Wang, J., Ye, L., Gao, R. X., Li, C., & Zhang, L. (2019). Digital Twin for rotating machinery fault diagnosis in smart manufacturing. International Journal of Production Research, 57(12), 3920-3934.
41. Weyer, S., Meyer, T., Ohmer, M., Gorecky, D., & Zühlke, D. (2016). Future modeling and simulation of CPS-based factories: an example from the automotive industry. IFAC-PapersOnLine, 49(31), 97-102.
42. Zhang, H., Liu, Q., Chen, X., Zhang, D., & Leng, J. (2017). A digital twin-based approach for designing and multi-objective optimization of hollow glass production line. IEEE Access, 5, 26901-26911.
43. Zhou, G., Zhang, C., Li, Z., Ding, K., & Wang, C. (2019). Knowledge-driven digital twin manufacturing cell towards intelligent manufacturing. International Journal of Production Research, 1-18

QR CODE