簡易檢索 / 詳目顯示

研究生: 李宛萱
Wan-Hsuan Lee
論文名稱: 5G通訊技術發展與知識擴散–以毫米波技術為例
5G Communication Development and Knowledge Diffusion: Millimeter wave Technology
指導教授: 何秀青
Hsiu-Ching Ho
口試委員: 劉顯仲
Shian-Jung Liu
王孔政
Kung-Jeng Wang
學位類別: 碩士
Master
系所名稱: 管理學院 - 科技管理研究所
Graduate Institute of Technology Management
論文出版年: 2021
畢業學年度: 109
語文別: 中文
論文頁數: 87
中文關鍵詞: 毫米波通訊主路徑分析專利引證網絡知識交流中介角色
外文關鍵詞: Millimeter Wave Communication, Main Path Analysis, Patent Citation Network, Knowledge Diffusion, Brokerage Role
相關次數: 點閱:270下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 從大型主機問世,個人電腦出現,網際網路興起,到智慧手機的普及,每一世代通訊發展都伴隨著關鍵技術而興起,5G通訊技術的出現具備「高速率、低延遲、萬物聯網」之三大特色,其背後需透過高頻段毫米波核心技術達成,重要性正與日俱增,也在2020年成為全球國家與企業們專注投入的商轉服務目標,將高頻毫米波頻段在無線通訊領域開啟一扇新大門,為智慧終端等市場帶來潛在可能性。本研究旨在探討毫米波通訊在技術發展中所關注議題,了解領域中技術主要參與者和技術交流現象。
    本研究自全球專利資訊系統WEBPAT做為資料來源,搜尋美國專利資料庫USPTO核准資料並取得1993-2020年間共3,438件發明專利資料,分別為419位專利權人遍及29國,運用主路徑分析方法探索毫米波通訊技術的主要發展脈絡。再以專利引用所形成的引證網絡關係,建構出專利引證網絡、專利權人引證網絡及國家引證網絡,藉由知識交流與網絡理論之結合,從此三個網絡中取得相關變數作為線性迴歸分析資料,進而探討網絡中的企業所扮演之中介角色樣態。
    本研究在毫米波通訊專利研究中分為技術、產業技術兩方面,在毫米波通訊技術共有三個階段,包含點對點多天線、智慧混合無線回傳及預測干擾回傳系統之技術發展脈絡;在企業專利權人的部分,發現多數企業專利權人在半導體、電子通信服務產業為發展主軸,以美國、韓國為主要的知識網絡核心國家,美國國內知識交流密切,是多國知識學習源及技術先驅者,而韓國於知識網絡中更是促進國家之間重要的知識流動角色。
    從迴歸分析結果發現,在半導體領域出色的企業有助於跨國的知識擴散。而在專利申請數、專利數、先進入時間優勢、技術品質對於企業在網絡領域中的知識傳播角色有正向影響,但若增加技術多樣性則成為不利因素。在合作次數方面,若合作數愈多有利於跨國知識擴散,但在對國內的知識傳遞則不利。
    由於相關的毫米波通訊知識網絡研究在台灣並不多,本研究透過以專利技術為資料基礎,從專利權人的角度觀察技術知識流動及企業交流情形,了解相關因素影響其知識傳播,以利提供企業參考在技術領域之技術策略行為。


    From the advanced of mainframes, the emergence of personal computers, the rise of Internet till the popularization of smart phones, the development of each generation communication networks has been accompanied by the rise of vital technology. 5G communication technology has three features, "high speed, low latency, internet of everything. Those need to be achieved by the core technology of high-frequency millimeter wave. Therefore, the level of importance is increasing day by day, and will also become a commercial transfer service target for all countries and enterprises in 2020 to make high-frequency millimeter wave opens a new world in the field of wireless communication that brings potential possibilities to terminal market. The purpose of study is to explore the issues of concern in the development of knowledge of millimeter wave communication technology to find out the main technical participants and the phenomena of technology exchange.
    The study collects patent from WEBPAT as a data source, which is the USPTO approved data from the US patent database collecting total 3,438 invention patents from 1993 to 2020. They are owned by 419 patentees and 29 countries. Using main path analysis method to track the main development of millimeter wave communication technology. Then, using patent citation to construct the patent citation network, patentee citation network, and country citation network. By the combination of knowledge exchange and network theory, we could acquire related variables from three networks used for linear regression analysis to explore brokerage role played by different companies in the network.
    This study divided into two aspects: technology and industrial technology in millimeter wave communication patent research. There are three stages in millimeter wave communication technology, including development of point-to-point multi-antenna, smart wireless backhaul system, and predictive interference backhaul system. For patentees, it is found that most enterprises are in the field of semiconductor and electronic communication. The United States and South Korea are the main core countries of the knowledge network. In addition, US has a very close domestic knowledge exchanges network, and it is also the source of knowledge learning and technology pioneers for most countries. In a knowledge exchange network, South Korea plays an important intermediary role among many countries.
    In the regression analysis results, it is found that if enterprise has better performance in the field of semiconductor will contribute to the diffusion of knowledge across country.
    The number of patent applications, the number of patents, the advantage of first entry, and the number of citations have a positive impact on the role of enterprises in the field of knowledge diffusion, but the increase of technical diversity comes to a disadvantage. In terms of cooperation number, if the number of cooperation is greater, it is beneficial to the diffusion of transnational knowledge, but it is not good for the transmission of knowledge within the country.
    There are not lots of studies on millimeter wave communication knowledge network in Taiwan, this study uses patented technology to observe the flow of technical knowledge, and corporate knowledge exchange condition from the perspective of patentees to realize the condition of technical knowledge diffusion and status of enterprise’s communication in order to find out potential factors that affect knowledge dissemination, providing enterprise with reference to the technical strategy behavior in the technical field.

    摘要 I ABSTRACT II 致謝 IV 目錄 V 表目錄 VII 圖目錄 VIII 第 1 章 緒論 1 1.1 研究背景與動機 1 1.2 研究問題 2 1.3 論文架構 3 第 2 章 文獻探討 4 2.1 毫米波通訊技術起源 4 2.1.1 第五代行動通訊系統 (5G) 4 2.1.2 毫米波技術 7 2.1.3 毫米波通訊技術 9 2.2 技術引用知識發展 13 2.3 企業網絡與知識發展 14 2.3.1 網絡關係 14 2.3.2 網絡位置 18 第 3 章 研究方法 22 3.1 資料來源與蒐集 23 3.1.1 資料來源 23 3.1.2 資料蒐集與關鍵字檢索 23 3.2 專利引證網絡 25 3.3 主路徑分析(Main-path Analysis, MPA) 26 3.3.1 知識流量計算 27 3.3.2 主路徑之選擇 29 3.4 線性迴歸分析 30 第 4 章 技術軌跡與產業技術網絡分析 31 4.1 毫米波通訊專利趨勢 34 4.2 毫米波通訊技術發展脈絡 36VI 4.2.1 第Ⅰ階段(2001-2009)點對點多天線技術 39 4.2.2 第 II 階段(2011-2017)智慧無線混合回傳系統 40 4.2.3 第 III 階段(2018-2020)無線預測回傳系統 41 4.3 產業技術網絡分析 43 4.3.1 主要國家 43 4.3.2 主要企業專利權人 46 4.3.3 產官學知識網絡 49 4.3.4 知識中介角色 50 第 5 章 毫米波知識擴散分析 53 5.1 變數設定與說明 53 5.2 模型假設 58 5.3 知識傳播角色之迴歸分析 58 5.3.1 各項影響因素結果 58 5.3.2 迴歸分析結果統整 61 第 6 章 結論 64 6.1 毫米波專利技術軌跡與趨勢 64 6.2 產業技術地位 65 6.3 專利技術掌握策略 66 6.4 研究限制 67 參考文獻 68 附錄一:關鍵延伸主路徑(Key-route15)節點專利列表 74 附錄二:專利檢索關鍵字 76

    Alexander, & Childe. (2013). Innovation: a knowledge transfer perspective. 24(2-3), 208-225.
    Ansoff, H. I. (1957). Strategies for diversification. 35(5), 113-124.
    Argote, L., & Ingram, P. (2000). Knowledge transfer: A basis for competitive advantage in firms. 82(1), 150-169.
    Argote, L., Ingram, P., Levine, J. M., & Moreland, R. L. (2000). Knowledge transfer in organizations: Learning from the experience of others. 82(1), 1-8.
    Batagelj, V. (2003). Efficient algorithms for citation network analysis.
    Burt, R. (1992). Structural holes. Cambridge, MA. In: Westview Press.
    Calero-Medina, C., & Noyons, E. C. (2008). Combining mapping and citation network analysis for a better understanding of the scientific development: The case of the absorptive capacity field. 2(4), 272-279.
    Chakrabarti, A. K., Dror, I., & Eakabuse, N. (1993). Interorganizational transfer of knowledge: an analysis of patent citations of a defense firm. 40(1), 91-94.
    Chávez-Santiago, R., Szydełko, M., Kliks, A., Foukalas, F., Haddad, Y., Nolan, K. E., . . . Balasingham, I. (2015). 5G: The convergence of wireless communications. 83(3), 1617-1642.
    De Nooy, W., Mrvar, A., & Batagelj, V. (2018). Exploratory social network analysis with Pajek: Revised and expanded edition for updated software (Vol. 46): Cambridge University Press.
    Emerson, D. T. (1997). The work of Jagadis Chandra Bose: 100 years of millimeter-wave research. IEEE transactions on microwave theory and techniques, 45(12), 2267-2273.
    Etzkowitz, H. (2002). Incubation of incubators: innovation as a triple helix of university-industry-government networks. Science and Public Policy, 29(2), 115-128.
    Etzkowitz, H., & Leydesdorff, L. (1995). The Triple Helix--University-industry-government relations: A laboratory for knowledge based economic development. 14(1), 14-19.
    Etzkowitz, H., & Zhou, C. (2017). The triple helix: University–industry–government innovation and entrepreneurship: Routledge.
    Garcia-Vega, M. (2006). Does technological diversification promote innovation?: An empirical analysis for European firms. 35(2), 230-246.
    Garfield, E., Sher, I. H., & Torpie, R. J. (1964). The use of citation data in writing the history of science. Retrieved from
    Garrido-Prada, P., Delgado-Rodriguez, M. J., & Romero-Jordán, D. (2019). Effect of product and geographic diversification on company performance: Evidence during an economic crisis. 37(3), 269-286.
    Gould, R. V., & Fernandez, R. M. (1989). Structures of mediation: A formal approach to brokerage in transaction networks. 89-126.
    Granovetter, M. S. (1973). The Strength of Weak Ties. 78(6), 1360-1380.
    Harris, J. K., Luke, D. A., Zuckerman, R. B., & Shelton, S. C. (2009). Forty years of secondhand smoke research: the gap between discovery and delivery. 36(6), 538-548.
    Heath, R. W. (2016). Millimeter wave: the future of commercial wireless systems. Paper presented at the 2016 IEEE Compound Semiconductor Integrated Circuit Symposium (CSICS).
    Henderson, R., Jaffe, A. B., & Trajtenberg, M. (1998). Universities as a source of commercial technology: a detailed analysis of university patenting, 1965–1988. 80(1), 119-127.
    Ho, M. H.-C., & Liu, J. S. (2013). The motivations for knowledge transfer across borders: the diffusion of data envelopment analysis (DEA) methodology. 94(1), 397-421.
    Ho, M. H.-C., & Verspagen, B. (2006). The role of national borders and regions in knowledge flows. 50-73.
    Hossain, S. (2013). 5G wireless communication systems. 2(10), 344-353.
    Hummon, N. P., & Doreian, P. (1989). Connectivity in a citation network: The development of DNA theory. 11(1), 39-63.
    Jaffe, A. B., Trajtenberg, M., & Henderson, R. (1993). Geographic localization of knowledge spillovers as evidenced by patent citations. 108(3), 577-598.
    Kühn, O., & Abecker, A. (1998). Corporate memories for knowledge management in industrial practice: Prospects and challenges. In Information technology for knowledge management (pp. 183-206): Springer.
    Kirkels, Y., & Duysters, G. (2010). Brokerage in SME networks. 39(3), 375-385.
    López-Cózar-Navarro, C., Benito-Hernández, S., & Platero-Jaime, M. (2017). The influence of cooperative relations on geographical expansion and diversification strategies in family firms. 26(4), 764-773.
    Lambe, C. J., & Spekman, R. E. (1997). Alliances, external technology acquisition, and discontinuous technological change. 14(2), 102-116.
    Lee, S. U., & Kang, J. (2015). Technological diversification through corporate venture capital investments: Creating various options to strengthen dynamic capabilities. 22(5), 349-374.
    Li, L., Wang, D., Niu, X., Chai, Y., Chen, L., He, L., . . . You, X. (2018). mmWave communications for 5G: implementation challenges and advances. 61(2), 021301.
    Liu, J. S., & Lu, L. Y. (2012). An integrated approach for main path analysis: Development of the Hirsch index as an example. Journal of the American Society for Information Science Technology, 63(3), 528-542.
    Liu, J. S., Lu, L. Y., & Ho, M. H.-C. (2019). A few notes on main path analysis. 119(1), 379-391.
    Liu, J. S., Lu, L. Y., & Ho, M. H.-C. (2020). A note on choosing traversal counts in main path analysis. 124(1), 783-785.
    Liu, J. S., Lu, L. Y., Lu, W.-M., & Lin, B. J. (2013). Data envelopment analysis 1978–2010: A citation-based literature survey. 41(1), 3-15.
    Lucio‐Arias, D., Leydesdorff, L. J. J. o. t. A. S. f. I. S., & Technology. (2008). Main‐path analysis and path‐dependent transitions in HistCite™‐based historiograms. 59(12), 1948-1962.
    Lucio‐Arias, D., & Leydesdorff, L. (2008). Main‐path analysis and path‐dependent transitions in HistCite™‐based historiograms. 59(12), 1948-1962.
    Ma, X., Yang, F., Liu, S., Song, J., & Han, Z. (2017). Design and optimization on training sequence for mmWave communications: A new approach for sparse channel estimation in massive MIMO. 35(7), 1486-1497.
    Marin, A., & Wellman, B. (2011). Social network analysis: An introduction. 11, 25.
    Markman, G. D., Siegel, D. S., & Wright, M. (2008). Research and technology commercialization. 45(8), 1401-1423.
    McDermott, R., & O’dell, C. (2001). Overcoming cultural barriers to sharing knowledge.
    Mei, Y. M., Lee, S. T., & Al-Hawamdeh, S. (2004). Formulating a communication strategy for effective knowledge sharing. 30(1), 12-22.
    Meyer-Krahmer, F., & Schmoch, U. (1998). Science-based technologies: university–industry interactions in four fields. 27(8), 835-851.
    Mina, A., Ramlogan, R., Tampubolon, G., & Metcalfe, J. S. (2007). Mapping evolutionary trajectories: Applications to the growth and transformation of medical knowledge. 36(5), 789-806.
    Moore, S., Haines, V., Hawe, P., & Shiell, A. (2006). Lost in translation: a genealogy of the “social capital” concept in public health. 60(8), 729-734.
    Moyal, N., & Islam, A. (2000). Strategically measure" technical depth index". Paper presented at the Proceedings 1st Austin Workshop on Engineering Management in Technology-Based Organizations.
    Mumtaz, S., Rodriguez, J., & Dai, L. (2016). MmWave massive MIMO: a paradigm for 5G: Academic Press.
    Nieto, M. J., & Santamaría, L. (2010). Technological collaboration: Bridging the innovation gap between small and large firms. 48(1), 44-69.
    Noh, S., Zoltowski, M. D., & Love, D. J. (2015). Multi-resolution codebook based beamforming sequence design in millimeter-wave systems. Paper presented at the 2015 IEEE Global Communications Conference (GLOBECOM).
    Panwar, N., Sharma, S., & Singh, A. K. (2016). A survey on 5G: The next generation of mobile communication. 18, 64-84.
    Perkmann, M., Tartari, V., McKelvey, M., Autio, E., Broström, A., D’este, P., . . . Hughes, A. (2013). Academic engagement and commercialisation: A review of the literature on university–industry relations. 42(2), 423-442.
    Qiao, J., Shen, X. S., Mark, J. W., Shen, Q., He, Y., & Lei, L. (2015). Enabling device-to-device communications in millimeter-wave 5G cellular networks. 53(1), 209-215.
    Ramlogan, R., Mina, A., Tampubolon, G., & Metcalfe, J. J. S. (2007). Networks of knowledge: The distributed nature of medical innovation. 70(2), 459-489.
    Rappaport, T. S., Heath Jr, R. W., Daniels, R. C., & Murdock, J. N. (2015). Millimeter wave wireless communications: Pearson Education.
    Rappaport, T. S., Sun, S., Mayzus, R., Zhao, H., Azar, Y., Wang, K., . . . Gutierrez, F. (2013). Millimeter wave mobile communications for 5G cellular: It will work! , 1, 335-349.
    Scott, J. (1988). Social network analysis. 22(1), 109-127.
    Seker, C., Güneser, M. T., & Ozturk, T. (2018). A review of millimeter wave communication for 5G. Paper presented at the 2018 2nd International Symposium on Multidisciplinary Studies and Innovative Technologies (ISMSIT).
    Siau, K., & Shen, Z. (2003). Mobile communications and mobile services. 1(1-2), 3-14.
    Sun, S., Rappaport, T. S., Heath, R. W., Nix, A., & Rangan, S. (2014). MIMO for millimeter-wave wireless communications: Beamforming, spatial multiplexing, or both? , 52(12), 110-121.
    Teece, D. J. (1998). Capturing value from knowledge assets: The new economy, markets for know-how, and intangible assets. 40(3), 55-79.
    Thamhain, H. J. (2003). Managing innovative R&D teams. 33(3), 297-311.
    Tharek, A., & McGeehan, J. (1988). Outdoor propagation measurements in the millimetre wave band at 60 GHz. 43-48.
    Tsai, K.-H., & Wang, J.-C. (2009). External technology sourcing and innovation performance in LMT sectors: An analysis based on the Taiwanese Technological Innovation Survey. 38(3), 518-526.
    Tushman, M., Tushman, M. L., & O'Reilly, C. A. (2002). Winning through innovation: A practical guide to leading organizational change and renewal: Harvard Business Press.
    Van de Vrande, V., De Jong, J. P., Vanhaverbeke, W., & De Rochemont, M. (2009). Open innovation in SMEs: Trends, motives and management challenges. 29(6-7), 423-437.
    Verspagen, B. (2007). Mapping technological trajectories as patent citation networks: A study on the history of fuel cell research. 10(01), 93-115.
    Wales, S., Rickard, D. J. E., & journal, c. e. (1993). Wideband propagation measurements of short range millimetric radio channels. 5(4), 249-254.
    Wang, D., Zhang, Y., Wei, H., You, X., Gao, X., & Wang, J. (2016). An overview of transmission theory and techniques of large-scale antenna systems for 5G wireless communications. 59(8), 1-18.
    Wang, M. C., & Chen, M. H. (2016). The more, the better? The impact of closure collaboration network and network structures on technology‐based new ventures' performance. 46(S1), 174-192.
    Wasserman, S., & Faust, K. (1994). Social network analysis: Methods and applications.
    Wei, L., Hu, R. Q., Qian, Y., & Wu, G. (2014). Key elements to enable millimeter wave communications for 5G wireless systems. 21(6), 136-143.
    Wellman, B., & Berkowitz, S. D. (1988). Social structures: A network approach (Vol. 2): CUP Archive.
    Wouter, D. N., Andrej, M., & Vladimir, B. (2005). Exploratory social network analysis with Pajek.
    Xiao, M., Mumtaz, S., Huang, Y., Dai, L., Li, Y., Matthaiou, M., . . . Lin, C. (2017). Millimeter wave communications for future mobile networks. IEEE Journal on Selected Areas in Communications, 35(9), 1909-1935.
    Yu, T.-K., Lu, L.-C., & Liu, T.-F. (2010). Exploring factors that influence knowledge sharing behavior via weblogs. 26(1), 32-41.
    Zahra, S. A., & Bogner, W. (2000). Technology strategy and software new ventures' performance: Exploring the moderating effect of the competitive environment. 15(2), 135-173.
    王光旭, & 熊瑞梅. (2014). 運用網絡分析探討政策掮客在政策過程中的角色: 以解嚴前後台中市都市發展為分析案例. (31), 31-88.
    李偉斌. (2012). 國小學童在班級人際友誼網絡之初探分析. (38), 387-415.
    倪善金, & 趙軍輝. (2015). 5G 無線通信網絡物理層關鍵技術. 31(12), 48-53.
    黃政仁, & 張肇元. (2020). The Relationships among Characteristics of Interlocking Directorate Network, Technological Diversity and Innovation Performance: Evidence from Taiwan's Electronics Industry/董事連結網絡特性, 技術多角化與創新績效之關聯性研究: 以臺灣電子業為例. 30(3), 145.
    經濟部智慧財產局, & 科睿唯安. (2019). 5G 技術全景報告.
    行政院. (2019). 臺灣5G行動計畫報告. https://digi.ey.gov.tw/File/76CD1E43C2424FF8
    GSMA. (2019). The Mobile Economy 2019. https://www.gsma.com/newsroom/press-release/new-gsma-study-5g-to-account-for-15-of-global-mobile-industry-by-2025/
    IHS Markit. (2020). The 5G Economy. 2020https://www.qualcomm.com/media/documents/files/the-5g-economy-in-a- post-covid-19-era-report.pdf
    無線電頻譜(維基百科). https://zh.wikipedia.org/wiki/%E6%97%A0%E7%BA%BF%E7%94%B5%E9%A2%91%E8%B0%B1
    國際電信聯盟無線電通信部門ITU. (2014). https://www.itu.int/dms_pub/itu-r/oth/0a/06/R0A0600005C0001PDFE.pdf
    江柏風(2020). 回顧2019與展望2020全球通訊用半導體市場成長動能https://ieknet.iek.org.tw/iekrpt/rpt_more.aspx?rpt_idno=199181942

    無法下載圖示 全文公開日期 2026/07/13 (校內網路)
    全文公開日期 2036/07/13 (校外網路)
    全文公開日期 2036/07/13 (國家圖書館:臺灣博碩士論文系統)
    QR CODE