簡易檢索 / 詳目顯示

研究生: 陳宏修
Hung-Shiou Chen
論文名稱: 放大前送合作式通訊網路之兩級式功率分配演算法
Two-Stage Algorithms for Power Allocation in Amplify-and-Forward Cooperative Networks
指導教授: 方文賢
Wen-Hsien Fang
口試委員: 洪賢昇
Hsien-Seng Hung
陳郁堂
Yie-Tarng Chen
余金郎
Jung-Lang Yu
賴坤財
Kuen-Tsair Lay
學位類別: 碩士
Master
系所名稱: 電資學院 - 電子工程系
Department of Electronic and Computer Engineering
論文出版年: 2010
畢業學年度: 98
語文別: 英文
論文頁數: 71
中文關鍵詞: 合作式通訊分散式空時碼推廣的ABBA碼功率分配中繼端點選擇注水法最大概似基因演算法凸集最佳化
外文關鍵詞: cooperative communications, distributed space-time code, GABBA code, power allocation, relay selection, water-filling, maximum likelihood, genetic algorithm, convex optimization
相關次數: 點閱:372下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 合作通訊是一個新興的傳輸技術,其可以藉由轉送彼此的訊息到目的端來形成一個分散式天線陣列,進而提供空間分集增益。而基於在中繼端點或目的端的通道狀態訊息 (channel state information, CSI),一個合作式通訊網路的系統效能能夠藉由選擇合適的中繼端點或功率資源分配來獲得進一步的提升。在本論文中,對於放大前送(amplify-and-forward ,AF)中繼網路,吾人提出兩種兩級式功率分配機制。其中,為了能夠適應於非對稱通道,此兩種機制皆首先決定介於資訊源端與中繼端點之間的功率分配,之後再考量所有資訊源端與中繼端點上的功率分佈情況。

    針對一個在接收端配置有多根天線的分散式GABBA空時編碼(distributed GABBA space-time coded)與放大前送中繼網路,吾人所提出的第一種功率分配機制首先最大化瞬時傳輸速率來決定資訊源端與中繼端點之間的功率分配。其後再利用注水法(water-filling)來最佳化中繼端點間功率分佈的情況。並且吾人也利用GABBA的編碼結構來降低最大概似(maximum likelihood, ML)偵測機制的計算複雜度。此外,本論文也探討了此系統所獲得的陣列增益(array gain) 與分集增益(diversity gain)。

    對於第二種兩級式功率演算法,吾人首先在多使用者放大前送中繼網路(multi-user AF relay network)中利用基因演算法(genetic algorithm, GA)來輔助解決中繼端點選擇與介於資訊源端和中繼端點之間的功率分配兩個結合機制所造成的問題。其中,根據中繼端點的選擇數目固定與否,吾人分別利用混合式基因演算法(hybrid genetic algorithm, HGA)或傳統基因演算法來解決此高度非線性最佳化問題。而在此演算法的第二級中,基於第一級所解出的資訊源端總功率和中繼端點總功率,吾人利用凸集最佳化(convex optimization)在最大化傳輸速率的考量下,使用一個疊代機制來交替的決定資訊源端與中繼端點上的功率分佈情形。

    相關模擬結果顯示吾人所提之方法較之前人的方法,能獲得更好的系統效能且又大量地降低運算複雜度。


    Cooperative communications are an emerging transmission technique in which a distributed antenna array can be created and provided the spatial diversity gains by relaying each other's messages to the destination. The performance of cooperative networks can be further enhanced by selecting an appropriate set of relays or by appropriately allocating the power resource based on channel state information (CSI) at the relays or at the destination. In this thesis, we propose two two-stage power allocation schemes for the amplify-and-forward (AF) relay networks. In order to be applicable to asymmetric channels, both schemes first determines the power allocation between the source and the relay, and then the power distribution among all source node(s) and relay nodes.

    The first power allocation scheme, devised for AF relay networks equipped with distributed GABBA space-time code and with multiple antennas at the destination, first determines the power allocation between the source and the relays by maximizing the instantaneous rate, and then optimizes the power distribution among the relay nodes via water-filling. Also, by making full use of the GABBA encoding structure, an ML detection scheme is addressed to reduce the complexity. Furthermore, the array gain and the diversity gain are determined to provide further insights into the new AF relay network.

    The second power allocation scheme is a two-stage algorithm devised for multi-user AF relay networks. First, a genetic algorithm (GA)-based approach is employed to solve the relay selection and the power allocation between the source and the relay at the same time, where, depending on whether the number of the cooperating relay nodes is either fixed or varied, we use a novel hybrid
    GA (HGA) or the conventional GA to resolve the highly nonlinear optimization
    involved. In the second stage, we consider an iterative scheme to determine the
    power distribution alternately among all source nodes and among all relay nodes
    using convex optimization to maximize the sum rates based on the source sum power and relay sum power determined in first stage.

    Conducted simulation results show that both of the proposed approaches yield satisfactory performance with reduced computational complexity overhead compared with pervious works in various scenarios.

    1 Introduction 1 2 Overview of Cooperative Communication Systems 7 2.1 Cooperative Networks . . . . . . . . . . . . . . . . . . . . . . . . . 7 2.2 Distributed Space-Time Codes . . . . . . . . . . . . . . . . . . . . . 14 2.3 Power Allocation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17 2.3.1 Capacity-Maximizing Power Allocation . . . . . . . . . . . . 18 2.3.2 Received SNR-Maximizing Power Allocation . . . . . . . . . 19 2.4 Relay Selection . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20 2.4.1 Opportunistic Relaying Scheme . . . . . . . . . . . . . . . . 20 2.4.2 Closest Relay Selection . . . . . . . . . . . . . . . . . . . . . 21 2.5 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22 3 A Two-Stage Power Allocation for AF Relay Networks With Distributed GABBA Space-Time Codes 23 3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23 3.2 Two-Stage Power Allocation and Low Complexity ML Detection . . 25 3.2.1 Two-Stage Power Allocation . . . . . . . . . . . . . . . . . . 25 3.2.2 Low Complexity ML Detection . . . . . . . . . . . . . . . . 28 3.2.3 Computational Complexity . . . . . . . . . . . . . . . . . . . 31 3.3 Performance Analysis . . . . . . . . . . . . . . . . . . . . . . . . . 32 3.4 Simulations and Discussions . . . . . . . . . . . . . . . . . . . . . . 36 3.5 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42 4 A Two-Stage Algorithm for Joint Relay Selection and Source/Relay Power Distribution in Multiuser AF Relay Networks 43 4.1 Introduction . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . 43 4.2 The Proposed Two-Stage Algorithm . . . . . . . . . . . . . . . . . . 44 4.2.1 Joint Relay Selection and Power Allocation . . . . . . . . . . 46 4.2.2 Joint Source Node and Relay Node Power Distribution . . . 53 4.3 Simulations and Discussions . . . . . . . . . . . . . . . . . . . . . . 56 4.4 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63 5 Conclusions 64 Reference 66 A Prove of (3.20) 70

    [1] G. J. Foschini and M. J. Gans, "On limits of wireless communications in a fading environment when using multiple antennas," Wireless Personal Communications, vol. 6, pp. 311-335, 1998.
    [2] A. Nosratinia, T. E. Hunter, and A. Hedayat, "Cooperative communication in wireless networks," IEEE Commun. Magazine, vol. 42, no. 10, pp. 74-80, May 2004.
    [3] A. Sendonaris, E. Erkip, and B. Aazhang, "User cooperation diversity-part I: System description" and "User cooperation diversity-part II: Implementation aspects and performance analysis," IEEE Trans. Commun., vol. 51, no. 11, pp. 1927-1948, Nov. 2003.
    [4] J. Laneman, D. Tse, and G. Wornell, "Cooperative diversity in wireless networks: Efficient protocols and outage behavior," IEEE Trans. Inform. Theory, vol. 50, no. 12, pp. 3062-3080, Dec. 2004.
    [5] Y. Jing and B. Hassibi, "Distributed space-time coding in wireless relay networks," IEEE Trans. Wireless Commun., vol. 5, no. 12, pp. 3524-3536, Dec. 2006.
    [6] B. Maham, A. Hjrungnes, and G. Abreu, "Distributed GABBA space-time codes in amplify-and-forward relay networks," IEEE Trans. Wireless Commun., vol. 8, no. 4, pp. 2036-2045, Apr. 2009.
    [7] G. T. F. de Abreu, "GABBA codes: Generalized full-rate orthogonally decodable space-time block codes," in Proc. Asilomar Conference on Signals, Systems and Computers, pp. 1278-1283, Nov. 2005.
    [8] Y.-W. Hong, W.-J. Huang, F.-H. Chiu, and C. J. Kuo, "Cooperative communications in resource-constrained wireless networks," IEEE Signal Processing Magazine, vol. 24, no. 3, pp. 47-57, May 2007.
    [9] M. O. Hasna and M. S. Alouini, "Optimal power allocation for relayed transmission over Rayleigh-fading channels," IEEE Trans. Wireless Commun., vol. 3, no. 6, pp. 1999-2004, Nov. 2004.
    [10] D. Gunduz and E. Erkip, "Opportunistic cooperation by dynamic resource allocation," IEEE Trans. Wireless Commun., vol. 6, no. 4, pp. 1446-1454, Apr. 2007.
    [11] J. Zhang, Q. Zhang, C. Shao, Y. Wang, P. Zhang, and Z. Zhang, "Adaptive optimal transmit power allocation for two-hop non-regenerative wireless relay system," in Proc. IEEE Vehicular Technology Conf., vol. 2, pp. 1213-1217, 2004.
    [12] I. Maric and R.D. Yates, "Bandwidth and power allocation for cooperative strategies in Gaussian relay networks," in Proc. Asilomar Conf. Signal, System Computers, vol. 2, pp. 1907-1911, 2004.
    [13] W.-J. Huang, Y.-W. Hong, and C. J. Kuo, "Lifetime maximization for amplify-and-forward cooperative networks," IEEE Trans. Wireless Commun., vol. 7, no. 5, pp. 1800-1805, May 2008.
    [14] B. Maham and A. Hjrungnes, "Power allocation strategies for distributed space-time codes in amplify-and-forward mode," Eurasip Journal on Advances in Signal Processing, article ID 612719, 2009.
    [15] A. S. Ibrahim, A. K. Sadek, W. Su, and K. J. R. Liu, "Cooperative communications with relay-selection: When to cooperate and whom to cooperate with?" IEEE Trans. Wireless Commun., vol. 7, no. 7, pp. 2814-2827, July 2008.
    [16] Y. Zhao, R. Adve, and T. Lim, "Improving amplify-and-forward relay networks: Optimal power allocation versus selection," IEEE Trans. Wireless Commun., vol. 6, no. 8, pp. 3114-3123, Aug. 2007.
    [17] A. Bletsas, A. Khisti, D. Reed, and A. Lippman, "A simple cooperative diversity method based on network path selection," IEEE J. Select. Areas Commun., vol. 24, no. 3, pp. 659-672, Mar. 2006.
    [18] Y. Jing and H. Jafarkhani, "Single and multiple relay selection schemes and their achievable diversity orders," IEEE Trans. Wireless Commun., vol. 8, no. 3, pp. 1414-1423, Mar. 2009.
    [19] A. K. Sadek, Z. Han, and K. J. R. Liu, "A distributed relay-assignment algorithm for cooperative communications in wireless networks," in Proc. IEEE Int. Conf. Commun., pp. 1592-1597, June 2006.
    [20] P. Herhold, E. Zimmermann, and G. Fettweis, "A simple cooperative extension to wireless relaying," in Proc. International Zurich Seminar on Communications, pp. 36-39, 2004.
    [21] K. J. R. Liu, A. K. Sadek, W. Su, and A. Kwasinski, Cooperative Communications and Networking. Cambridge University Press, 2009.
    [22] K. T. Phan, L. B. Le, S. A. Vorobyov and Tho Le-Ngoc, "Power allocation and admission control in multiuser relay networks via convex programming: centralized and distributed schemes," EURASIP Journal on Wireless Communications and Networking, article ID 901965, 2009.
    [23] Duy H. N. Nguyen and Ha H. Nguyen, "SNR maximization and distributed beamforming in multiuser multi-relay networks," in Proc. IEEE Globecom, article ID 5425246, 2009.
    [24] Yi Shi, J. H.Wang, W. L. Huang and K. B. Letaief, "Power allocation in gaussian interference relay channels via game theory," in Proc. IEEE Globecom, article ID 4698567, 2008.
    [25] S. Joshi and S. Boyd, "Sensor selection via convex optimization," IEEE Trans. Signal Process., vol. 57, no. 2, pp. 451-462, 2009.
    [26] K. T. Phan, Duy H. N. Nguyen, and Tho Le-Ngoc, "Joint power allocation and relay selection in cooperative networks," in Proc. IEEE Globecom, article ID 5425752, 2009.
    [27] S. C. Huang, W. H. Fang, H. S. Chen, and Y. T. Chen, "Hybrid genetic algorithm for joint precoding and transmit antenna selection in multiuser MIMO systems with limited feedback," in Proc. IEEE Vehicular Technology Conf., May 2010.
    [28] J. Zhang, H. Zhuang, T. Liang, J. Han, and J. Lv, "A novel relay selection strategy for multi-user cooperative relaying networks," in Proc. IEEE Vehicular Technology Conf., article ID 5073325, 2009.
    [29] H. S. Chen, W. H. Fang, and Y. T. Chen, "Relaying through distributed GABBA space-Time coded amplify-and-forward cooperative networks with two-stage power allocation," in Proc. IEEE Vehicular Technology Conf., May 2010.
    [30] V. Havary-Nassab, S. Shahbazpanahi, A. Grami, and Z. Q. Luo, "Distributed beamforming for relay networks based on second-order statistics of the channel state information," IEEE Trans. Signal Process., vol. 56, no. 9, pp. 4306-4316, 2008.
    [31] S. Boyd and L. Vandenberghe, Convex Optimization. Cambridge University Press, 2004.
    [32] M. Grant and S. Boyd, CVX: Matlab software for disciplined convex programming, [Online] Available: http://stanford.edu/~boyd/cvx, 2008.
    [33] D. Tse and P. Viswanath, Fundamentals of Wireless Communication. Cambridge University Press, 2005.
    [34] T. M. Cover and J. A. Thomas, Elements of Information Theory. John Wiley, 1991.
    [35] F. B. Espax and J. J. Boutros, "Capacity considerations for wireless multiple- input multiple-output channels," in Proc. Workshop on Multiaccess, Mobility and Teletraffic for Wireless Communications, Oct. 1999.
    [36] M. K. Simon and M. S. Alouini, Digital Communication Over Fading Channels: A Unified Approach to Performance Analysis. John Wiley, 2000.
    [37] J. Craig, "New, simple and exact result for calculating the probability of error for two-dimensional signal constellations," in Proc. IEEE Milcom, vol. 2, pp. 571-575, 1991.
    [38] I. S. Gradshteyn and I. M. Ryzhik, Table of Integrals, Series, and Products. Academic Press, 1996.
    [39] L. Zheng and D. N. Tse, "Diversity and multiplexing: A fundamental tradeoff in multiple-antenna channels," IEEE Trans. Inform. Theory, vol. 49, no. 5, pp. 1073-1096, May 2003.
    [40] M. Abramowitz and I. A. Stegun, Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables. Dover Publications, 1972.
    [41] J. H. Holland, Genetic Algorithms. Sci. Am. 1992.

    QR CODE