簡易檢索 / 詳目顯示

研究生: 陳品豪
Pin-Hao Chen
論文名稱: 採用前景電容校正技術之十六位元逐次漸進式類比數位轉換器設計與實現
Design and Implementation of 16-bit SAR ADC with Foreground Capacitor Calibration Technology
指導教授: 鍾勇輝
Yung-Hui Chung
口試委員: 陳信樹
Hsin-Shu Chen
陳筱青
Hsiao-Chin Chen
陳伯奇
Poki Chen
鍾勇輝
Yung-Hui Chung
學位類別: 碩士
Master
系所名稱: 電資學院 - 電子工程系
Department of Electronic and Computer Engineering
論文出版年: 2023
畢業學年度: 111
語文別: 中文
論文頁數: 94
中文關鍵詞: 電容校正技術逐次漸進式類比數位轉換器高解析
外文關鍵詞: Capacitor Calibration Technology, SAR ADC, High Resolution
相關次數: 點閱:368下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

本論文提出一個採用電容校正技術之十六位元每秒一百萬次取樣的逐次漸進式類比數位轉換器。對於一個十六位元類比數位轉換器而言,有兩個主要的設計考量。對於雜訊而言,採用靜態前置放大器來抑制比較器所貢獻的雜訊以滿足設計規格。而對於線性度來說本論文採用電容陣列橋接技術降低取樣輸入電容並且達到熱雜訊的規格校正部分為通過 使用數位式電容校正以及電容交換技術來實現。此外,快速二元視窗切換技術被用來輔助電容校正所需要的部份功能,藉由減少不必要的電容切換誤差進一步改善無雜散動態範圍。在台積電的0.18 微米 CMOS 製程下,其晶片面積是 2093平方毫米。在3.3伏特及 1.8伏特 的 操作電壓下,功率消耗為1.427毫瓦。經過電容校正後,在10k赫茲頻率下量測的訊號對雜訊與失真比是 80.32 dB,無雜散動態範圍是93.65 dB,性能指標是 165.7dB。


This thesis is aimed to present a 16-bit successive approximation register analog-to-digital converter (SAR ADC) using capacitor calibration technique. For 16-bit ADCs, there are two main design challenges to conquer. For the noise, the pre-amplifier is proposed to suppress the noise contributed by the comparator to meet specifications. For the linearity, this thesis uses segmented Capacitive Digital-to-Analog Converter (C-DAC) to reduce the sampling capacitor and achieve the specification of the thermal noise. Capacitor calibration and capacitor swapping techniques are proposed to use in the ADC. In addition, the Fast-Binary-Window (FSB) DAC switching scheme is used in this design, and the spurious free dynamic range (SFDR) is improved by eliminating unnecessary capacitor switching errors.
A 16-bit 1MS/s SAR ADC using capacitor calibration technique was implemented in TSMC 180-nm CMOS. The die area of this ADC is2093mm2. It consumes 1.427mW at 3.3 V and 1.8 V supply. After capacitor calibration, at 10kHz, the measured SNDR and SFDR are 80.32 dB and 93.65 dB, respectively. The measured figure of merit (FOM) is 165.7dB.

論文摘要 III Abstract IV 誌謝 V 目錄 VI 表目錄 IX 圖目錄 X 第一章 緒論 13 1.1 研究動機與目的 13 1.2 章節說明 15 第二章 文獻回顧 16 2.1 自我校正技術 16 2.2 最小有效位元校正技術 18 2.3 基於擾動之數位背景校正技術 19 2.4 運用抖動方式 之數位校正 21 2.5 性能比較 22 第三章 類比數位轉換器之結構考量 24 3.1 電容式數位類比轉換器校正之概念 26 3.2 電容校正技術 27 3.2.1 共模電壓之精確度共模電壓之精確 30 3.2.2 Z-ADC之校之校正準確度正準確度 32 3.2.3 Z-ADC之量化範圍之量化範圍 . 34 3.2.4 比較器之直流位準偏移比較器之直流位準偏移.. 35 3.3 電容陣列橋接技術電容陣列橋接技術. 38 3.4 快速二元視窗切換技術快速二元視窗切換技術. 41 3.5 電容交換技術電容交換技術 43 第四章 電容校正之十六位元每秒一百萬次取樣連續漸進式類比數電容校正之十六位元每秒一百萬次取樣連續漸進式類比數位轉換器實現位轉換器實現 45 4.1 電路架構與校正流程電路架構與校正流程 45 4.2 取樣電路取樣電路 50 4.3 比較器比較器 52 4.4 橋接電容式數位類比轉換器橋接電容式數位類比轉換器 55 4.4.1電容陣列設計考量電容陣列設計考量––MSB端端 57 4.4.2電容陣列設計考量電容陣列設計考量––LSB端端 58 4.4.3 橋接電容橋接電容CB之設計考量之設計考量 58 4.4.4 直流偏移校準電路直流偏移校準電路 60 4.5 基於共模電壓之切換開基於共模電壓之切換開關關 60 4.6 類比數位轉換器邏輯控制電路類比數位轉換器邏輯控制電路 61 4.7 參考電壓緩衝器參考電壓緩衝器 63 4.8 雜訊分析雜訊分析 66 4.9 佈局考量佈局考量 67 4.9.1 電容陣列佈局電容陣列佈局 69 4.10 模擬結果模擬結果 72 4.10.1 佈局前模擬結果佈局前模擬結果 72 4.10.2 佈局後模擬結果佈局後模擬結果 76 4.11 量測結果量測結果 80 4.11.1 量測設定量測設定 81 4.11.2 量測結果量測結果––動態性能動態性能 82 4.11.3 量測結果量測結果––靜態性能靜態性能 85 4.11.4 結果分析與總結結果分析與總結 87 第五章 結論與未來展望結論與未來展望 89 5.1 結論結論 89 5.2 未來展望未來展望 90 參考文獻 91

[1] C. P. Hurrell, et al., "An 18b 12.5MS/s ADC With 93 dB SNR," in IEEE Journal of Solid-State Circuits, vol. 45, no. 12, pp. 2647-2554, Dec. 2010.
[2] A. Bannon, et al., "An 18b 5MS/s SAR ADC with 100.2 dB Dynamic Range," in VLSI Symposium on Circuits, June 2014, pp. 1-2.
[3] M. Maddox, et al., “A 16 bit linear passive-charge-sharing SAR ADC in 55nm CMOS,” in Proc. of IEEE A-SSCC, Nov. 2016, pp. 153-156.
[4] J. Shen, et al., "A 16-bit 16MS/s SAR ADC with On-Chip Calibration in 55nm CMOS," VLSI Symposium on Circuits, Jun, 2017, pp. 282-283.
[5] D. Hummerston, et al., "An 18-bit 2MS/s Pipelined SAR ADC utilizing a sampling distortion cancellation circuit with -107dB THD at 100kHz," VLSI Symposium on Circuits, Jun, 2017, pp. 280-281.
[6] R. Guan, et al., "16-bit 1-MS/s SAR ADC with foreground digital-domain calibration," IET Circuits, Devices & Systems, vol. 12, issue 4, pp. 505-513, 2018.
[7] C. C. Lee, et al., "A 12b 70MS/s SAR ADC with Digital Startup Calibration in 14nm CMOS," VLSI Symposium on Circuits, Jun, 2015, pp. 62-63.
[8] Y.-S. Shu, et al., "An oversampling SAR ADC with DAC mismatch error shaping achieving 105dB SFDR and 101dB SNDR over 1kHz BW in 55nm CMOS," IEEE International Solid-State Circuit Conference, Feb. 2016.
[9] C.-C. Liu, et al., "A 12 bit 100 MS/s SAR-Assisted Digital-Slope ADC," in IEEE Journal of Solid-State Circuits, vol. 51, no. 12, pp. 2941-2950, Dec. 2016.
[10] J. Fredenburg, et al., "A 90MS/s 11MHz Bandwidth 62dB SNDR Noise-Shaping SAR ADC," IEEE International Solid-State Circuit Conference, Feb. 2012. pp. 468-469.
[11] C.-C. Liu, et al., "A 0.46mW 5MHz-BW 79.7dB-SNDR Noise-Shaping SAR ADC with Dynamic-Amplifier-Based FIR-IIR Filter," IEEE International Solid-State Circuit Conference, Feb. 2017. pp. 466-467.
[12] S. Li, et al., "A 13-ENOB 2nd-Order Noise-Shaping SAR ADC Realizing Optimized NTF Zeros Using an Error-Feedback Structure," IEEE International Solid-State Circuit Conference, Feb. 2018. pp. 234-235.
[13] H. Li, et al., “Signal-Independent Background-Calibrating 20b 1MS/s SAR ADC with 0.3ppm INL,” in Proc. of IEEE ISSCC, Feb. 2018, pp. 242-243.
[14] Y.-H. Chung, et al., “A 102dB-SFDR 16bit Calibration-Free SAR ADC in 180-nm CMOS,” IEEE Asia Pacific Conference on Circuits and Systems (APCCAS), Nov. 2019, pp. 5-8.
[15] H.-S. Lee, et al., "A Self-Calibrating 15 Bit CMOS A/D Converter," IEEE J. Solid-State Circuits, vol. SC-19, no. 6, pp. 813–819, Dec. 1984.
[16] W.-H. Tseng, et al., “A 12-bit 104 MS/s SAR ADC in 28 nm CMOS for digitally-assisted wireless transmitters,” in IEEE A-SSCC Dig. Tech. Papers, Nov. 2015, pp. 1–4.
[17] W. Liu, et al., “A 12-bit, 45 MS/s, 3 mW Redundant Successive-Approximation-Register Analog-to-Digital Converter with Digital Calibration,” IEEE J. Solid-State Circuits, vol. 46, no. 11, pp. 2661–2672, Nov. 2011.
[18] R. Xu, et al., "Digitally Calibrated 768-kS/s 10-b Minimum-Size SAR ADC Array With Dithering," IEEE J. Solid-State Circuits, vol. 47, no. 9, pp. 2129–2140, Sep.2012.
[19] A. H. T. Chang, “Low-Power High-Performance SAR ADC With Redundancy and Digital Background Calibration,” Ph.D. dissertation, Dept. Elect. Eng. Comput. Sci., Massachusetts Inst. Technol., Cambridge, MA, USA, 2013.
[20] C.-C Liu, et al., “A 10b 100MS/s 1.13mW SAR ADC with binary scaled error compensation,” in IEEE ISSCC Dig. Tech. Papers, pp.386–387, Feb. 2010.
[21] H.-K Hong, et al., “A Decision-Error-Tolerant 45 nm CMOS 7b 1 GS/s Nonbinary 2b/Cycle SAR ADC,” IEEE Journal of Solid-State Circuits, vol. 50, no. 2, pp. 543-555, Nov, 2015.
[22] M. Dessouky and A. Kaiser, “Input switch configuration suitable for rail-to-rail operation of switched-opamp circuits,” IEE Electron. Letter, vol. 35, pp. 8-10, Jan. 1999.
[23] M. Miyahara, et al., “A low-noise selfcalibrating dynamic comparator for high-speed ADCs,” in Proc. IEEE Asian Solid-State Circuits Conf. (A-SSCC), Nov. 2008, pp. 269–272.
[24] B.-S. Song , et al., “A 1 V 6 b 50 MHz current-interpolating CMOS ADC,” in Symp. VLSI Circuits, 1999, pp. 79-80.
[25] S.-W. M. Chen and R. W. Brodersen, “A 6-bit 600 MS/s 5.3 mW asynchronous ADC in 0.13- μ m CMOS,” IEEE J. Solid-State Circuits, vol. 41, no. 12, pp. 2669–2680, Dec. 2006.
[26] T. Y. Man, et al., Development of single-transistor-control LDO based on flipped voltage follower for SoC,” IEEE Trans. Circuits Syst. I, Reg. Papers, vol. 55, no. 5, pp. 1392–1401, Jun. 2008.

無法下載圖示 全文公開日期 2025/08/07 (校內網路)
全文公開日期 2025/08/07 (校外網路)
全文公開日期 2025/08/07 (國家圖書館:臺灣博碩士論文系統)
QR CODE