簡易檢索 / 詳目顯示

研究生: 徐國峯
Kuo-Feng Hsu
論文名稱: 三相感應電動機效率改善之研究
Efficiency Improvement of Three-phase Induction Motors
指導教授: 黃仲欽
Jonq-Chin Hwang
口試委員: 葉勝年
Sheng-Nian Yeh
劉傳聖
Chuan-Sheng Liu
林長華
Chang-Hua Lin
黃仲欽
Jonq-Chin Hwang
學位類別: 碩士
Master
系所名稱: 電資學院 - 電機工程系
Department of Electrical Engineering
論文出版年: 2018
畢業學年度: 106
語文別: 中文
論文頁數: 82
中文關鍵詞: 高效率感應電動機有限元素法效率測試
外文關鍵詞: high-efficiency induction motor, finite element method, efficiency test
相關次數: 點閱:438下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

針對全球能源效率標準的升級,低壓三相鼠籠式感應電動機效率標準被強制提升至IE3等級。因此,本文提出使用低損耗矽鋼片和銅棒轉子分別替代一般矽鋼片及鑄鋁轉子以降低鐵損和轉子銅損。文中實際設計及製作二台6極、250HP之三相感應電動機,區分為實驗組和對照組進行效益改善分析,並引用經驗公式及矽鋼片鐵損曲線計算鐵損減少的變化。由實測結果得知,鐵損量測值與預測值接近,鐵損可有效被改善。至於轉子銅損的降低,則透過計算銅棒及其端環電阻,以評估轉子銅損可減少的比例。本文亦使用Flux 2D有限元素法分析定子和轉子槽的靜態磁場,以確保磁通密度低於飽和值且磁力線維持平滑分佈。
本文採用之IEEE 112-A、IEEE 112-B和CNS 5421,分別為效率測試的動力計法、損失分離法以及圓線圖法。三種效率測試的結果分別為95.97%、95.90%及96.10%,均高於IE3最低效率95.80%的要求。此外,由於提高效率需同時考慮電機啟動性能,實際測試銅棒轉子的啟動轉矩為270.1 kg-m,大於NEMA標準要求的額定轉矩 183.1 kg-m;而銅棒轉子的啟動電流量測值為2108A,低於Code G所規定的2191A。鑄鋁轉子及銅棒轉子實際測試中獲得的啟動轉矩和啟動電流,亦進一步藉由CNS 5421提出的三種計算方法得到驗證。綜言之,本文的低壓三相鼠籠式感應電動機效率已達IE3等級,且其啟動轉矩與啟動電流亦均符合國際相關規範之要求。


In response to the upgrade of global energy efficiency standards, the efficiency of low-voltage three-phase squirrel-cage induction motor is mandatorily upgraded to class IE3. Therefore, this thesis proposes to reduce the iron and rotor copper losses by using low-loss silicon steel sheet material and copper-bar rotor to replace silicon steel sheets and cast-aluminum rotor, respectively. Two 6-pole, 250HP, three-phase induction motors are designed and built, and the experimental as well as its counterpart groups are formed for benefit improvement analysis. The empirical formula and silicon iron loss curves are introduced to calculate the range of iron loss reduction. The measured results agree closely with the predicted values, and indicate that the core loss can be effectively improved. As to the reduction of rotor copper loss, copper-bar and its end ring resistance are calculated to assess the proportion that the copper loss of the rotor can be decreased. In addition, finite element method of Flux 2D is used to analyze the static magnetic field of the stator and rotor slots to ensure smooth flux line distribution with flux density lower than the saturation value.
The IEEE 112-A, IEEE 112-B and CNS 5421, which are the methods for dynamometer evaluation, measurement of stray-load loss as well as the efficiency test with circle diagram, respectively, are adopted to evaluate the motor designed. The corresponding efficiencies are 95.97%, 95.90% and 96.10%. All are higher than the minimum efficiency of 95.80% required by IE3. Meanwhile, since efficiency improvement needs to take motor starting performance into consideration, real test yields the starting torque of 270.1 kg-m for the motor with copper-rotor bar, which is larger than the rated torque of 183.1 kg-m as required by NEMA standard. Besides, starting current measurement gives 2,108A for the motor with copper-bar rotor, which is smaller than 2,191A as specified by Code G. Both the starting torques and currents obtained from real test for the motors with cast-aluminum rotor as well as copper-bar rotor are further confirmed by the three calculation methods proposed by CNS 5421. In short, the efficiency of the proposed low-voltage three-phase squirrel-cage induction motor is upgraded to class IE3 with its starting torque and starting current comply with international standard.

中文摘要 Abstract 誌 謝 目 錄 符號索引 圖表索引 第一章 緒論 1.1 研究動機及目的 1.2 文獻探討 1.3 研究方法及特色 1.4 本文大綱 第二章 三相感應電動機結構與特性 2.1 前言 2.2 三相感應電動機構造及分類 2.3 三相感應電動機等效電路模式 2.4 三相感應電動機之效率評估 2.5 三相感應電動機之啟動及運轉特性 2.6 結語 第三章 三相感應電動機效率改善策略 3.1 前言 3.2 轉子槽型及尺寸規則 3.3 感應電動機規格及設計的參數 3.4 有限元素法靜磁場分析 3.5 鑄鋁型轉子製作 3.6 銅棒型轉子製作 3.7 低鐵心損失的矽鋼片材料 3.8 結語 第四章 實測與性能評估 4.1 前言 4.2 三相感應電動機無載與堵住試驗 4.2.1 無載試驗 4.2.2 堵住試驗 4.3 三感應電動機的性能量測 4.3.1 動力計法 4.3.2 損失分離法 4.3.3 圓線圖法 4.4 實測結果 4.4.1 效率測試驗證 4.4.2 五大損失分析 4.4.3 啟動電流及啟動轉矩量測結果 4.5 結語 第五章 結論與建議 5.1 結論 5.2 建議 參考文獻 附錄A 經濟部公告-修正低壓三相鼠籠型感應電動機能源效率 基準及實施日期 附錄B IEEE 112 Form B2-Method calculations 附錄C 節錄CNS 5421 T形圓線圖作圖法及計算 附錄D 節錄CNS 5421最大起動電流及最小起動轉矩計算

[1]Chen, Sen and Sheng-Nian Yeh, “Optimal Efficiency Analysis of Induction Motors
Fed by Variable-voltage and Variable-frequency Source”, IEEE Transactions on
Energy Conversion, vol. 7, no. 3, pp. 537-543, 1992.
[2]Chen, Sen and Sheng-Nian Yeh, “Efficiency Control of Field Oriented Operation
Based on the Open-loop VVVF Drivers”, IEEE IAS Annual Meeting Conference Record,
pp. 58-64, 1991.
[3]Chun-Yu Hsiao, Sheng-Nian Yeh and Jonq-Chin Hwang, “Design of High Performance
Permanent-magnet Synchronous Wind Generators”, Energies, vol. 7, pp. 7105-7124,
2014.12.
[4]洪偉宸,銅轉子式馬達對效率提升之研究與應用,國立高雄應用科技大學電機工程系碩士
論文,2008年7月。
[5]鄒金台、黃傳興、林俊宏、莊逢輝,我國感應電動機市場發展趨勢與能源效率標準提升研究,
台灣大電力研究中心,96年節約能源論文專輯,第1-37頁,2002年。
[6]國際能源署電力設備消耗統計http://www.iea.org
[7]台灣電力股分有限公司http://www.taipower.com.tw,各行業別用電量統計資料,民國102年
-104年。
[8]IEC 60034-30,1ST edition, Rotating Electrical Machines-Part 30: Efficiency Classes
of Line Operated AC Motors (IE code), 2008.
[9]IEEE 112 Standard Test Procedure for Polyphase Induction Motors and Generators,
2004.
[10]中國國家標準,三相感應電動機特性計算法,CNS 5421,經濟部標準檢驗局,88年8月31日
修訂版。
[11]中華民國國家標準,低壓三相鼠籠型高效率感應電動機(一般用) CNS 14400,經濟部標準
檢驗局,101年3月26日修訂版。
[12]劉征艮、李春光,高效電機提高效率的方法,電機技術,2012年第1期,第11-15頁。
[13]夏亮,鼠籠式異步電動機轉子導體型式的選擇,防爆電機,2009年第4期,第44卷
第12-14頁。
[14]胡宗皓,三相感應馬達能源效率提昇設計與分析,國立清華大學動力機械工程學系碩士
論文,2012年6月。
[15]IEC 60034-2-1,2nd edition, Rotating Electrical Machines-Part 2-1: Standard Methods
for Determining Losses and Efficiency From Tests (Excluding Machines for Traction
Vehicles), 2014.
[16]JEC-37 Standard of The Japanese Electrotechnical Committee,Induction
Machines,1979.
[17]劉慶、簡利麗,電動機效率驗證方法對比研究,防爆電機,2011年第四期,第46卷
第38-40頁。
[18]凌群雅,馬達動力量測實驗室之設計與實現,國立宜蘭大學機械與機電工程學系碩士
論文,2015年7月。
[19]張嘉諳,馬達用電節約能源系統化研究,大同大學電機工程研究所碩士論文,2007年7月。
[20]邱天基、陳國堂,電機機械,全華科技圖書股份有限公司,89年。
[21]梁賢達、黃慧容,電機機械II,台科大圖書公司,100年11月。
[22]何清佳,電機設計,全華科技圖書股份有限公司,78年3月。
[23]古正信,電機機械,超級科技出版社,民國98年9月。
[24]康基宏,提高感應馬達之效率,東元電機,2008年10月30日。
[25]Stephen J. Chapman ”Electric Machinery Fundamentals”, 1995.
[26]NEMA MG1-Part 20 Large Machines-Induction Machines, 2006.
[27]吳仁弘,三相鼠籠型感應電動機之設計實例與全盤量測的分析研究(Ⅱ),明志科技大學電機
工程研究所碩士論文,2011年7月。
[28]電磁鋼捲電磁特性曲線型錄,中國鋼鐵股份有限公司,2004年。
[29]A. T. De Almeida, F. J. T. E. Ferreira, J. F. Busch, and P. Angers, “Comparative
Analysis of IEEE 112-B and IEC 34-2 Efficiency Testing Standards Using Stray Load
Losses in Low-Voltage Three-Phase, Cage Induction Motors”, IEEE Transactions on
Industry Applications, vol. 38, no.2, pp. 608-614, 2002.
[30]L. Lingan, ” Determination of Starting Current in Three-Phase Induc-
tion Motors”, IEEE Transactons on Energy Conversion, vol. 5, no. 2, pp. 386-392,
1990.
[31]U. Levy, IEEE, C.F. Landy, M.D. McCulloch, “Improved Models for The Simulation of
Deep Bar Induction Motors”, IEEE Transactions on Energy Conversion, vol. 5,
no. 2, pp. 393-400, 1990.
[32]N. K. Ghai, “IEC and NEMA Standards for Large Squirrel-Cage Induction Motors-
A Comparison”, IEEE Transactions on Energy Conversion, vol. 14, no. 3, pp.
542-552, 1999.
[33]A. T. De Almeida, F. J. T. E. Ferreira, and A. Quintino Duarte, “Technical and
Economical Considerations on Super High-Efficiency Three-Phase Motors”, IEEE
Transaction on Industry Applications, vol. 50, no. 2, pp. 1274-1285, 2014.
[34]L. Alberti, N. Bianchi, A. Boglietti, A. Cavagnino, ”Core Axial Lengthening as
Effective Solution to Improve the Induction Motor Efficiency Classes”, IEEE
Transaction on Industry Applications, vol. 50, no. 1, pp. 218-225, 2014.
[35]M. Enokizono, “Vector Magnetic Characteristic Technology for Development of Super Premium Efficiency (IE4 Level) Motor”, IEEE Transactions on Magnetics, vol. 48, no.11, pp. 3054-3059, 2012.
[36]C. Yung ”Improving electric motors by better designing” IEEE Induction
Applications Magazine, vol. 13, no. 6, pp. 12-20, 2007.
[37]感應電動機使用說明書,東元電機,2017年7月版。
[38]K. Esen, Engin, ”A New Field Test Method for Determining Energy Efficiency of
Induction Motor”, IEEE Transactions on Instrumentation and Measurement, vol. PP,
iss. 99, pp. 1-10, 2017.
[39]W. Cao, “Comparison of IEEE 112 and IEC Standard 60034-2-1”, IEEE Transactions
on Energy Conversion, vol. 24, no. 3, pp. 802-808, 2009.
[40]H. Li, and R. S. Curiac, “Energy Conservation: Motor Efficiency, Efficiency
Tolerances, and the Factors That Influence Them”, IEEE Industry Applications
Magazine, vol. 18, no. 1, pp. 62-68, 2012.

無法下載圖示 全文公開日期 2023/01/01 (校內網路)
全文公開日期 本全文未授權公開 (校外網路)
全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
QR CODE