簡易檢索 / 詳目顯示

研究生: 張云榕
Yun-Jung Chang
論文名稱: VD隔震之結構受近斷層地震的反應研究 (I)
Responses of Structures with Viscously Damped Isolation to Near-Fault Ground Motions (I)
指導教授: 黃震興
Jenn-Shin Hwang
口試委員: 汪向榮
Shiang-Jung Wang
黃尹男
Yin-Nan Huang
學位類別: 碩士
Master
系所名稱: 工程學院 - 營建工程系
Department of Civil and Construction Engineering
論文出版年: 2021
畢業學年度: 109
語文別: 中文
論文頁數: 246
中文關鍵詞: 近斷層地震隔震系統鉛心橡膠支承墊黏性阻尼器
外文關鍵詞: Near-fault ground motions, Seismic isolated system, Lead-rubber bearing, Viscous damper
相關次數: 點閱:373下載:6
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

隔震技術歷經大量試驗研究及實務應用,已被證實於多數情況下隔震系統能有效隔絕地震,降低上部結構之受力反應,使得隔震技術逐漸被廣泛應用於結構設計。然而,由於近斷層地震具長週期速度脈衝之特性,會造成隔震系統產生過大位移,並傳遞較大的水平剪力至上部結構,不僅可能導致隔震層破壞,甚至使上部結構產生嚴重損壞,因此於近斷層地區使用隔震設計仍為一項重大挑戰。
為有效控制隔震系統於近斷層地震下產生的巨大位移,並同時確保其傳遞水平剪力不會明顯增加,黏性阻尼器於隔震設計的應用是不可或缺的。此外,目前隔震設計並未將近斷層地震納入考量,因此於近斷層地震作用下隔震設計可能無法發揮理想效益;若兼顧近斷層地震進行設計,則可能導致隔震系統週期過短,使其對中小度地震的隔震效果不彰。因此勢必需要發展適當的設計對策,使隔震系統得以在小、中、大地震及近斷層地震作用下均能發揮良好的隔震效能。
根據上述討論,本研究主要目的為利用黏性阻尼器(包含α<1.0、α=1.0及α>1.0之黏性阻尼器)之力學行為特性合併使用具雙線性遲滯特性之鉛心橡膠支承墊,並以實際近斷層地震進行設計,試圖發展可以在小、中、大地震及近斷層地震中發揮良好效果的隔震系統。此外,藉由雙自由度模型模擬隔震結構,討論隔震結構以韌性折減降低上部結構設計需求之經濟性及安全性,以證明隔震結構相對傳統耐震結構更具優勢。


The effectiveness of seismic isolation design has been well recognized. However, the isolation design against near-fault ground motions remain challenging, considering that the near-fault ground motions containing long period velocity pulses may result in a dramatic displacement demand on the isolation system and an unacceptable force transmitted to the superstructure. To control the maximum displacement of the isolation system against near-fault ground motions, viscous damping devices are often introduced to the isolation system. However, by so doing, the isolation effectiveness against far-field earthquakes may be questionable on the other side.
In this study, parametric analysis is conducted on the forces transmitted by the isolation system composed of bilinear hysteretic bearings and viscous dampers with various damping exponents. It is concluded that the incorporation of nonlinear viscous dampers with a damping exponent larger than 1.0 will transmit less seismic force to the superstructure when the maximum displacement of the isolation system remains controllable.
In addition, a sample isolated structure is designed using the response spectra of measured near-fault ground motions, and inelastic dynamic analysis is performed to investigate the effectiveness of isolation design against both near-fault and far-field ground motions. Considering the huge demand by near-fault earthquakes, to design superstructure by its pure elastic behavior is not rational. The concept of force-controlled concept is then employed to reduce the transmitted force to the superstructure by ductility reduction factors specified in various design codes. The isolated structure including the isolation system is modeled as a two degree of freedom system for inelastic dynamic analysis. The results show that the maximum displacement at the isolation system is more controllable with the implementation of viscous dampers when subject to near-fault earthquakes, and the isolated structure still remains effective against far-field ground motions.

誌謝 I 摘要 III Abstract V 目錄 VII 表目錄 XI 圖目錄 XIII 第一章 緒論 1 1.1 研究背景與目的 1 1.2 研究重點與內容 3 第二章 文獻回顧 5 2.1 前言 5 2.2 近斷層地震特性 5 2.2.1 Forward Directivity 5 2.2.2 Fling Step 6 2.2.3 Maximum Incremental Velocity (MIV) 6 2.3 近斷層地震篩選方法與依據 7 2.3.1 小波分析理論 7 2.3.2 近斷層地震篩選依據 9 2.4 雙自由度模型之理論基礎與應用 12 2.4.1 雙自由度模型之理論基礎 12 2.4.2 隔震結構於近斷層地區之設計對策 16 第三章 隔震結構於近斷層地區之設計對策 19 3.1 前言 19 3.2 隔震系統之傳遞水平剪力 19 3.2.1 隔震系統基本資訊 20 3.2.2 加入黏性阻尼器之隔震系統設計流程 26 3.2.3 最大傳遞水平剪力之推導 28 3.2.4 靜力分析公式適用性驗證 29 3.2.5 傳遞水平剪力參數分析 31 3.3 單自由度隔震系統之動力歷時分析 34 3.3.1 地震資料選取 34 3.3.2 動力歷時分析反應結果 34 3.4 隔震結構設計方式探討 37 第四章 案例分析 39 4.1 前言 39 4.2 非線性動力歷時分析模型之設計與建立 39 4.3 隔震結構以Ra做韌性折減之反應結果 40 4.4 隔震結構以RI做韌性折減之反應結果 41 4.4.1 韌性折減係數使用RI之可行性 41 4.4.2 隔震結構動力分析反應之比較 42 4.4.3 隔震結構在各地震下之動力分析反應 46 第五章 結論與建議 49 參考文獻 52 附表 58 附圖 84

【1】 “CSMIP Strong-Motion Records from the Northridge, California Earthquake of January 17 1994”. California Department of Conservative, Division of Mines and Geology, Office of Strong Motion Studies, Report OSMS 94 -07.
【2】 葉超雄、葉義雄、羅俊雄、黃燦輝、蔡克銓、張荻薇、張國鎮、蔡益超、楊永斌 (1995),“日本阪神淡路地震引起阪神大震災之訪查與探討”,國家地震工程研究中心報,NCREE-95-00。
【3】 溫國樑 (1999),“九二一集集大地震全面勘災報告-強地動調查”,國家地震工程研究中心報告NCREE-99-052。
【4】 Zare, M. (2004), “Bam, Iran Eathquake of 26 December 2003, MW6.5: A Study on the Strong Ground Motion”, 13th World Conference on Earthquake Engineering Vancouver, B. C., Canada, Paper No. 8001.
【5】 林主潔、林克強、洪曉慧、柴駿甫、黃世建、張道明、葉勇凱、劉光晏、劉季宇、蔡克銓,“2008中國汶川地震事件勘災報告”,國家地震工程研究中心研究報告,NCREE-09-011,2009。
【6】 邱聰智、翁樸文、沈文成、何郁姍、黃世建、鍾立來 (2018),“2016美濃地震台南市震損建物資料庫”,國家地震工程研究中心報告NCREE-18-004。
【7】 王仁佐、王修賢、江宏偉、江奇融、李柏翰、李翼安、沈文成、林凡茹、林旺春、林哲民、林沛暘、林瑞良、洪曉慧、柴駿甫、郭俊翔、翁樸文、張毓文、許尚逸、陳俊仲、游忠翰、黃郁惟、黃雋彥、曾柏翰、楊卓諺、楊炫智、趙書賢、劉佳泓、盧志杰、賴姿妤、蕭輔沛、蘇進國 (2018),“2018年2月6日花蓮地震勘災報告”,國家地震工程研究中心報告NCREE-18-005。
【8】 Dynamic Isolation System, Inc. (1990). “Force Control Bearings for Bridges”.
【9】 Kelly, J.M. (1994). “Dynamic and Failure Characteristics of Bridgestone Isolation Bridges”, EERC Report No. 91/04, Earthquake Engineering Research Center, University of Berkeley.
【10】 Earthquake Protection Systems, Inc. (1993). “Friction Pendulum Seismic Isolation Bearings”.
【11】 Kelly, J.M. (1999). “The role of damping in seismic isolation.”, Earthquake Engineering and Structural Dynamics, Volume 28 ,p.3-20.
【12】 內政部營建署(2011),“建築物耐震設計規範及解說”。
【13】 ASCE (2017). “Minimum Design Loads for Buildings and Other Structures.” ASCE/SEI 7-16, American Society of Civil Engineers, Reston, VA.
【14】 Somerville, P. G., Smith, N. F., Graves, R. W. and Abrahamson, N. A. (1997). “Modification of Empirical Strong Ground Motion Attenuation Relations to Include the Amplitude and Duration Effects of Rupture Directivity.” Seismological Research Letters, Volume 68, November 1.
【15】 Reid, H. F. (1910). “The Mechanics of the Earthquake, The California Earthquake of April 18, 1906, Report of the State Investigation Commission.” Volume 2, Carnegie Institution of Washionton, D.C.
【16】 Kalkan, E., and Sashi K. K. (2006), “Effects of Fling Step and Forward Directivity on Seismic Response of Buildings.” Earthquake Spectra, Volume 22, No.2, page 367-390.
【17】 Bertero, V. V., Mahin, S. A., and Herrera, R. A. (1978). “Aseismic Design Implications of Near-Fault San Fernando Earthquake Record.” Earthquake Engineering and Structural Dynamics, Volume 6, p. 31-42.
【18】 Hall, J. H., Heaton, T. H., Halling, M. W., and Wald, D. J. (1995). “Near-Source Ground Motion and Its Effects on Flexible Buildings.” EERI Earthquake Spectra, Volume 11, No.4.
【19】 胡昌華 (2004),“基於MATLAB6.X的系統分析與設計:小波分析”,西安市:西安電子科技大學出版社。
【20】 Baker, J. W. (2007). “Quantitative Classification of Near-Fault Ground Motions Using Wavelet Analysis.” Bulletin of the Seismological Society of America, Volume 97, No.5, p. 1486-1501.
【21】 Shahi, S. K., and Baker, J. W. (2014). “An Efficient Algorithm to Identify Strong-Velocity Pulses in Multicomponent Ground Motions.” Bulletin of the Seismological Society of America, Volume 104, No.5, p. 2456-2466.
【22】 Kelly, J.M. (1990). “Base Isolation: Linear Theory and Design.” Earthquuake Spectra, Volume 6, No 2.
【23】 Jangid, R.S., and Kelly, J.M. (2007). “Base isolation for near-fault motions”, Earthquake Engineering and Structural Dynamics, Volume 30, p.691-707.
【24】 林筠珊(2020),“近斷層地震對隔震系統之影響及相應設計對策”,台灣科技大學碩士論文。
【25】 陳廷暉(2019),“近斷層地震對隔震系統之影響及相應設計對策”,台灣科技大學碩士論文。
【26】 Hwang, J.S., Hung, C.F., Huang, Y.N. and Wang, S.J. (2010). “Design force transmitted by isolation system composed of lead-rubber bearings and viscous dampers”, International Journal of Structural Stability and Dynamics, Volume 10, No. 2, p. 287–298.
【27】 郭世明(2006),“黏性阻尼器於隔震結構設計之應用之分析”,台灣科技大學碩士論文。

QR CODE