簡易檢索 / 詳目顯示

研究生: 謝明錡
Ming-Qi Xie
論文名稱: 基於雲端監控之社區直流微電網能量管理策略與驗證
Energy Management Strategy and Verification of Community DC Microgrid Based on Cloud Monitoring
指導教授: 林長華
Chang-Hua Lin
口試委員: 陳貽評
Yi-Ping Chen
劉華棟
Hwa-Dong Liu
黃仲欽
Hwang-Jonq Chin
學位類別: 碩士
Master
系所名稱: 電資學院 - 電機工程系
Department of Electrical Engineering
論文出版年: 2023
畢業學年度: 111
語文別: 中文
論文頁數: 161
中文關鍵詞: 雲端系統直流微電網儲能系統能量管理策略削峰填谷
外文關鍵詞: Cloud system, DC microgrid,, Peak shaving and valley filling, Energy management strategy, Energy storage system
相關次數: 點閱:410下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本文旨在於提出基於雲端技術的直流微電網能量管理策略,以有效管理能源在直流微電網中的流動,從而提高能源使用效率。首先,所提出的能量管理策略利用雲端監控技術,實時收集各獨立能源裝置的能源產生與相關數據,並使用神經網路預測負載需求,再加入粒子群演算法,將儲能系統電力進行合理分配,以提高能源利用率,並降低流動電費。其次,該策略基於直流微電網架構,實現了能源多元融合,包括市電供應、太陽能和儲能系統等。再者,透過在高峰時段減少能源需求,並在低峰時段儲存多餘能源,使削峰填谷策略能夠提高能源利用效率,進一步降低能源成本。
    為了驗證所提出的能量管理策略的有效性,本文使用電能轉換器模擬各獨立能源裝置,再透過無線通訊技術和雲端服務組成的混合能源系統,將市電、儲能系統、再生能源和直流微電網相互連接,以建立一個完整的直流微電網系統。同時,本系統還整合軟體平台及前端服務,藉此取得儲能系統、再生能源和市電的即時狀態,並根據削峰填谷概念及再生能源發電情境,以提供各子系統相應的決策,使得各子系統達到最合適配置。最後,藉由對一實際案例在不同情境下進行降額實測,以驗證本文所提出策略的可行性。


    This study proposes a cloud-based energy management strategy for a DC microgrid to reduce energy costs and optimize energy flow. The strategy utilizes cloud monitoring technology to collect real-time data. It incorporates load prediction and further integrates particle swarm algorithms to optimize power allocation in the energy storage system, thereby improving energy utilization efficiency and reducing electricity expenses. By integrating grid supply, solar power, and energy storage systems, the strategy promotes energy diversification, contributing to a greener and more reliable energy ecosystem. The proposed strategy's effectiveness is validated by implementing a hybrid system comprising power converters, battery energy storage, wireless communication, and cloud services. Real-time statuses of the microgrid's components inform decision-making processes, facilitating the optimal operation of subsystems. Finally, the strategy's feasibility is demonstrated through a comprehensive case study and rigorous experimental testing, establishing its potential for practical implementation and showcasing its potential impact on energy management in DC microgrids.

    目錄 摘要 I Abstract II 誌謝 III 目錄 IV 圖目錄 X 表目錄 XIV 第一章 緒論 1 1.1 研究背景 1 1.2 文獻探討 2 1.3 論文架構 6 第二章 直流微電網與雲端技術 8 2.1 直流電網技術 8 2.1.1 直流微電網之規範 9 2.1.2 電能轉換器之控制 9 2.1.3 微電網之控制 11 2.2 儲能系統之要件 12 2.2.1 鋰電池種類與規格 13 2.2.2 電池電量狀態 14 2.2.3 電池平衡技術 15 2.3 雲端技術之用途與目的 15 2.4 雲端運算模型 17 2.5 雲端設備 19 2.6 網頁技術 20 2.6.1 MVC框架 20 2.6.2 前端技術 21 2.6.3 後端技術 24 2.7 資料庫 27 2.7.1 時間序列資料庫 28 2.7.2 InfluxDB 29 2.8 微服務 30 2.8.1 微服務之用途與目的 30 2.8.2 容器化 31 2.9 能量分配策略 31 2.9.1 類神經網路模型 32 2.9.2 搜尋演算法 33 第三章 建置具雲端監控之直流微電網系統 35 3.1 整體系統架構 35 3.2 直流微電網之儲能系統 37 3.2.1 電池管理系統 37 3.2.2 電能轉換器 38 3.2.3 儲能系統管理單元 38 3.2.4 儲能系統之資料收集系統介紹 39 3.2.5 儲能系統命令介紹 42 3.2.6 資料處理之通訊介面 43 3.3 市電及再生能源 49 3.4 直流負載 49 3.5 雲端管理系統與直流電網之連結 50 3.5.1 資料庫介紹 51 3.5.2 雲端運算服務 52 3.5.3 前端網頁服務介紹 53 3.5.4 雲端系統整合平台 53 第四章 雙向轉換器之分析與控制 55 4.1 電能轉換器之架構 55 4.2 雙向CLLLC轉換器之工作模式 57 4.3 雙向CLLLC轉換器設計考量 72 4.4 電能轉換器之操作模式 77 4.4.1 定電壓供電模式 78 4.4.2 定電流供電模式 79 4.4.3 定電流充電模式 80 4.4.4 停機模式 81 第五章 削峰填谷策略設計與控制流程 82 5.1 用電負載曲線說明 82 5.1.1 長短期記憶網路 82 5.1.2 資料處理 83 5.1.3 負載功率等比例降額說明 84 5.1.4 負載時間等比例縮短說明 86 5.2 契約容量與時間電價說明 86 5.2.1 裝置契約容量考量 86 5.2.2 時間電價參考 88 5.3 再生能源數據 90 5.4 直流電網之系統操作條件 91 5.4.2 直流微電網功率平衡原則 92 5.4.3 直流微電網各子系統輸出功率原則 93 5.4.4 儲能系統電量狀態範圍原則 93 5.4.5 儲能系統電量狀態平衡原則 94 5.4.6 直流微電網電壓範圍原則 95 5.5 削峰填谷情境 95 5.5.1 無再生能源 95 5.5.2 具再生能源 96 5.6 削峰填谷控制策略驗證 97 5.6.1 常見控制策說明 98 5.6.2 所提策略一 102 5.6.3 所提策略二 110 5.6.4 不同控制策略計算結果比較 112 第六章 削峰填谷策實測結果 113 6.1 系統測試平台介紹 113 6.2 前端網頁服務功能實現 114 6.3 削峰填谷策略之實現 115 6.3.1 常見控制策略之實測結果 115 6.3.2 所提策略一之實測結果 120 6.3.3 所提策略二之實測結果 124 6.4 削峰填谷策略結果比較 127 第七章 結論與未來研究方向 130 7.1 結論 130 7.2 未來研究方向 131 參考文獻 132

    [1]台灣經濟部能源局再生能源資訊網, “再生能源統計資料-再生能源資訊網,” [Online]. Available: https://www.re.org.tw/information/statistics.aspx.
    [2]X. Chen, J. Han, Q. Zhang, and Q. Wang, “Economic Comparison of AC and DC Distribution System”, 2019 IEEE 8th International Conference on Advanced Power System Automation and Protection (APAP), Xi’an, Oct. 2019.
    [3]S. Anand and B. G. Fernandes, “Optimal Voltage Level for DC Microgrids,” IECON 2010 - 36th Annual Conference on IEEE Industrial Electronics Society, Glendale, Nov. 2010.
    [4]B. R. Blasi, “DC microgrids: review and applications,” 2013.
    [5]H. Dai, G. Zhao, M. Lin, J. Wu, and G. Zheng, “A Novel Estimation Method for the State of Health of Lithium-Ion Battery Using Prior Knowledge-Based Neural Network and Markov Chain,” IEEE Transactions on Industrial Electronics , vol. 10, no. 66, pp. 7706 - 7716, Oct. 2019.
    [6]Y. Wang, X. Han, D. Guo, L. Lu, Y. Chen and M. Ouyang, "Physics-Informed Recurrent Neural Network With Fractional-Order Gradients for State-of-Charge Estimation of Lithium-Ion Battery," in IEEE Journal of Radio Frequency Identification, vol. 6, pp. 968-971, Oct. 2022.
    [7]Z. Zhang, X. Cheng, Z.-Y. Lu, and D.-J. Gu, "SOC Estimation of Lithium-Ion Battery Pack Considering Balancing Current,” IEEE Transactions on Power Electronics, vol. 33, no. 3, pp. 2216 - 2226, March 2018.
    [8]C. Baumann, “Microgrids For Data Centers: Enhancing Uptime While Reducing Costs and Carbon,” . [Online]. Available: https://blog.se.com/datacenter/2020/08/12/microgrids-data-centers-enhancing-uptime-reducing-costs-and-carbon/.
    [9]H. Zhang and Y. Li, “Constant voltage control on DC bus of PV system with flywheel energy storage source (FESS),” 2011 International Conference on Advanced Power System Automation and Protection, pp. 1723-1727, Beijing, 2011.
    [10]A. Khorsandi, M. Ashourloo, H. Mokhtari, and R. Iravani, “Automatic droop control for a low voltage DC microgrid,” IET Generation, Transmission & Distribution, vol. 10, no. 1, pp. 41-47, July 2016.
    [11]N. Hajilu, G. B. Gharehpetian, S. H. Hosseinian, M. R. Poursistani, and M. Kohansal, “Power control strategy in islanded microgrids based on VF and PQ theory using droop control of inverters,” 2015 International Congress on Electric Industry Automation (ICEIA 2015), Shiraz, 2015, pp. 37-42.
    [12]X. Zhang, J. Guan, and B. Zhang, “A master slave peer to peer integration microgrid control strategy based on communication,” 2016 IEEE PES Asia-Pacific Power and Energy Engineering Conference (APPEEC), Xi'an, 2016, pp. 1106-1110.
    [13]X. Meng, Z. Liu, J. Liu, T. Wu, S. Wang, and B. Liu, “A new master-slave based secondary control method for virtual synchronous generator,” 2016 IEEE 2nd Annual Southern Power Electronics Conference (SPEC), Auckland, 2016, pp. 1-6.
    [14]X. Liu, P. Wang, and P. C. Loh, “A Hybrid AC/DC Microgrid and Its Coordination Control,” IEEE Transactions on Smart Grid, vol. 2, no. 2, pp. 278-286, June 2011.
    [15]N. L. Díaz, A. C. Luna, J. C. Vasquez, and J. M. Guerrero, “Centralized Control Architecture for Coordination of Distributed Renewable Generation and Energy Storage in Islanded AC Microgrids,” IEEE Transactions on Power Electronics, vol. 32, no. 7, pp. 5202 - 5213, July 2017.
    [16]S. Wakao, H. Takano, T. Motegi, H. Nakamuira, and T. Sato; T. Yabumoto, “Computational simulation of peak cut system composed of PV power generation and storage battery,” 3rd World Conference onPhotovoltaic Energy Conversion, 2003, Osaka, May 2003.
    [17]M. Nakamura, K. Kimura, and K. Takeno, “Peak-cut control of smart energy BTS: Power control technology for reducing the power consumed by base stations,” 2015 IEEE International Telecommunications Energy Conference (INTELEC), Osaka, Oct. 2015.
    [18]H. Liang, Y. Liu, F. Li, and Y. Shen, “Dynamic Economic/Emission Dispatch Including PEVs for Peak Shaving and Valley Filling,” IEEE Transactions on Industrial Electronics, Vol. 66: Iss. 4, Pages 2880-2890, Yichang, June 2018.
    [19]D. Zhang, S. Zhang, L. Teng, W. Kong, X. Peng, and M. Liu, “Research on a peak-cutting and valley-filling Optimal Algorithm Based on Communication Power Supply,” 2018 IEEE International Telecommunications Energy Conference (INTELEC), Turino, Oct. 2018.
    [20]Z. Shao, X.-S. Zou, X.-F. Yuan, W. Xiong, Y. Yuan, Y. Miao, Z. Tan, and Y. Xu, “Research on peak-cutting and filling technology based on flexible interconnected distribution network,” 8th Renewable Power Generation Conference (RPG 2019), Shanghai, Oct. 2019.
    [21]Y. Zheng, C. Wang, and P. Ju, “Study on peak cutting and valley filling based on flexible load,” 2020 5th Asia Conference on Power and Electrical Engineering (ACPEE), Chengdu, June 2020.
    [22]Y. Tan, M. Wen, J. Liao, C. Wang, Y. Liu, and T. Ouyang “Scheduling Strategy of Energy Storage Peak-Shaving and Valley-Filling Considering the Improvement Target of Peak-Valley Difference,” 2021 11th International Conference on Power and Energy Systems (ICPES), Shanghai, Dec. 2021.
    [23]H. -T. Chang, T. -J. Liang and W. -C. Yang, "Design and Implementation of Bidirectional DC-DC CLLLC Resonant Converter," 2018 IEEE Energy Conversion Congress and Exposition (ECCE), Portland, OR, USA, pp. 2712-2719, 2018.
    [24]G. Liu, D. Li, J. Q. Zhang, B. Hu and M. L. Jia, "Bidirectional CLLC resonant DC-DC converter with integrated magnetic for OBCM application," 2015 IEEE International Conference on Industrial Technology (ICIT), Seville, Spain, pp. 946-951, 2015.
    [25]T. Yu, G. Sicheng and X. Shaojun, "Research on Open-loop Soft-start Strategy of CLLLC Bi-directional Resonant Converter," 2018 IEEE International Power Electronics and Application Conference and Exposition (PEAC), Shenzhen, China, pp. 1-6, 2018.
    [26]K. Friansa, I. Haq, B. Santi, D. Kurniadi, E. Leksono, and B. Yuliarto, “Development of Battery Monitoring System in Smart Microgrid Based on Internet of Things (IoT),” Procedia Eng.170, p. 482–487, 2017.
    [27]Y.-W. Chen and J. M. Chang, “EMaaS: Cloud-Based Energy Management Service for Distributed Renewable Energy Integration,” IEEE Transactions on Smart Grid , vol. 6, no. 6, pp. 2816 - 2824, Nov. 2015.
    [28]L. Yu, T. Jiang, and Y. Zou, “Real-Time Energy Management for Cloud Data Centers in Smart Microgrids,” IEEE Access, vol. 4, pp. 941 - 950, March 2016.
    [29]P. Mell and T. Grance, “Effectively and Securely Using the Cloud Computing Paradigm”. NIST Information Technology Laboratory, 2010.
    [30]M. Armbrust, A. Fox, Rean Griffith, A. D. Joseph, R. Katz, A. Konwinski, G. Lee, D. Patterson, A. Rabkin, I. Stoica, and M. Zaharia, “A View of Cloud Computing”, Communications of the ACM, Vol. 53 No. 4, Pages 50-58, April 2010.
    [31]Tutorialspoint, “Basic MVC Architecture,” 2016. [Online] .Available: http://www.tutorialspoint.com/struts_2/basic_mvc_architecture.htm.
    [32]A. Boukerche, S. Guan, and R. E. D. Grande, “A Task-Centric Mobile Cloud-Based System to Enable Energy-Aware Efficient Offloading,” IEEE Transactions on Sustainable Computing, vol. 3, no. 4, pp. 248 - 261, Oct. 2018.
    [33]W3C, “What is CSS?”. [Online] .Available: https://www.w3.org/standards/webdesign/htmlcss#whatcss.
    [34]ECMA, “Standard ECMA-262 Javascript Specification.” [Online]. Available: https://www.ecma-international.org/publications/standards/Ecma-262.htm.
    [35]S. Bera, S. Misra, and J. J. Rodrigues, “Cloud Computing Applications for Smart Grid: A Survey,” IEEE Transactions on Parallel and Distributed Systems, vol. 26, no. 5, pp. 1477 - 1494, May 2015.
    [36]K. Friansa, I. Haq, B. Santi, D. Kurniadi, E. Leksono, and B. Yuliarto, “Development of Battery Monitoring System in Smart Microgrid Based on Internet of Things (IoT),” Procedia Eng.170, p. 482–487, 2017.
    [37]Y.-W. Chen and J. M. Chang, “EMaaS: Cloud-Based Energy Management Service for Distributed Renewable Energy Integration,” IEEE Transactions on Smart Grid , vol. 6, no. 6, pp. 2816 - 2824, Nov. 2015.
    [38]Node.js, “About node.js,” [Online]. Available: https://nodejs.org/en/about/.
    [39]Node.js, “About node.js,” [Online]. Available: https://nodejs.org/en/about/.
    [40]Node-RED, “Node-RED,” [Online]. Available: https://nodered.org/.
    [41]MQTT, “ MQTT: The Standard for IoT Messaging,” [Online]. Available:
    https://mqtt.org/.
    [42]EDUCBA, “RabbitMQ vs MQTT | Top 7 Amazing Differences You Should Know ,” [Online]. Available: https://www.educba.com/rabbitmq-vs-mqtt/.
    [43]Eclipse Mosquito, ” An open source MQTT broker,” [Online]. Available: https://mosquitto.org/.
    [44]E. Codds, “A relational model of data for large shared data banks,” 1970.
    [45]K. Rudolph, “A Comparison of NoSQL Time Series Databases”, 2015.
    [46]InfluxDB,” InfluxDB Markedly Outperforms OpenTSDB in Time Series Data & Metrics Benchmark,” [Online]. Available: https://www.influxdata.com/blog/influxdb-markedly-outperforms-opentsdb-in-time-series-data-metrics-benchmark/.
    [47]InfulxDB, “InfluxDB line protocol reference | InfluxDB OSS 1.8 Documentation,” [Online]. Available: https://docs.influxdata.com/influxdb/v1.8/write_protocols/line_protocol_reference/.
    [48]K. Gos, and W. Zabierowski, “The Comparison of Microservice and Monolithic Architecture,” 2020 IEEE XVIth International Conference on the Perspective Technologies and Methods in MEMS Design (MEMSTECH), Ukraine, April 2020.
    [49]Z. Li, “Comparison between common virtualization solutions: VMware Workstation, Hyper-V and Docker,” 2021 IEEE 3rd International Conference on Frontiers Technology of Information and Computer (ICFTIC), Greenville, SC, USA, Nov. 2021.
    [50]Slintel, ” Docker - Market Share, Competitor Insights in Containerization,” [Online]. Available: https://www.slintel.com/tech/containerization/docker-market-share.
    [51]S. R. Khuntia, J. L. Rueda and M. A. M. M. van der Meijden, “Neural network-based load forecasting and error implication for short-term horizon,” 2016 International Joint Conference on Neural Networks (IJCNN), Vancouver, BC, Canada, 2016, pp. 4970-4975, 2016.
    [52]S. Singh, S. Hussain and M. A. Bazaz,“Short term load forecasting using artificial neural network,” 2017 Fourth International Conference on Image Information Processing (ICIIP), Shimla, India, pp. 1-5, 2017.
    [53]M. A. Yahya, S. P. Hadi and L. M. Putranto, “Short-Term Electric Load Forecasting Using Recurrent Neural Network (Study Case of Load Forecasting in Central Java and Special Region of Yogyakarta),” 2018 4th International Conference on Science and Technology (ICST), Yogyakarta, Indonesia, pp. 1-6, 2018.
    [54]M. R. Islam, A. Al Mamun, M. Sohel, M. L. Hossain and M. M. Uddin, “LSTM-Based Electrical Load Forecasting for Chattogram City of Bangladesh,” 2020 International Conference on Emerging Smart Computing and Informatics (ESCI), Pune, India, pp. 188-192, 2020.
    [55]Kwang-Ho Kim, Hyoung-Sun Youn and Yong-Cheol Kang, “Short-term load forecasting for special days in anomalous load conditions using neural networks and fuzzy inference method,” in IEEE Transactions on Power Systems, vol. 15, no. 2, pp. 559-565, May 2000.
    [56]The Modbus Organization, ‘‘Modbus Application Protocol Specification,’’ V1.1b3, Retrieved March 31, 2009.
    [57]The Modbus Organization, ‘‘MODBUS over serial line specification and implementation guide.’’ V1.02, Retrieved Dec. 20, 2006
    [58]王俊昇, ”基於雲端管理之分散式儲能系統設計與實現,” 台灣科技大學電機工程研究所碩士論文, 西元2021年1月.
    [59]Ernesto Aguilar Madrid (Owner),” Short-term electricity load forecasting (Panama),” [Online]. Available: https://www.kaggle.com/datasets/ernestojaguilar/shortterm-electricity-load-forecasting-panama.
    [60]X. Li and X. Wu, “Constructing long short-term memory based deep recurrent neural networks for large vocabulary speech recognition,” 2015 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), South Brisbane, QLD, Australia, pp. 4520-4524, 2015.
    [61]台灣電力公司, “電力供需資訊-今日備轉容量率,” [Online]. Available: https://www.taipower.com.tw/tc/page.aspx?mid=206&cid=405&cchk=e1726094-d08c-431e-abee-05665ab1c974.
    [62]台灣電力公司, “電價表,” 112年3月17日. [Online], Available: https://www.taipower.com.tw/upload/238/2023032816294927924.pdf.
    [63]台灣電力公司, “電力供需資訊-今日用電曲線(能源別),” [Online], Available: https://www.taipower.com.tw/tc/page.aspx?mid=206&cid=404&cchk=8ccc1918-8cae-4f40-a2d0-b43454f4f218.
    [64]“IEEE Guide for the Interoperability of Energy Storage Systems Integrated with the Electric Power Infrastructure,” IEEE Standards Coordinating Committee 21.
    [65]K. S. S. Musti, "Quantification of Demand Response in Smart Grids, “ 2020 IEEE India Council International Subsections Conference (INDISCON),” Visakhapatnam, ” India, pp. 278-282, 2020.

    無法下載圖示 全文公開日期 2033/07/27 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)
    全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
    QR CODE