簡易檢索 / 詳目顯示

研究生: NADYA NISSAULYA
NADYA - NISSAULYA
論文名稱: 偶聯劑添加於自身終止高分歧寡聚物之鋰離子電池之研究
The investigations of coupling agent effects on self terminated of branch architecture (STOBA) in lithium ion battery
指導教授: 陳崇賢
Chorng-Shyan Chern
王復民
Fu-Ming Wang
口試委員: 許榮木
Jung-Mu Hsu
學位類別: 碩士
Master
系所名稱: 工程學院 - 化學工程系
Department of Chemical Engineering
論文出版年: 2016
畢業學年度: 104
語文別: 英文
論文頁數: 74
中文關鍵詞: 鋰離子電池自身終止高分歧寡聚物
外文關鍵詞: EPOXY ACRYLATE
相關次數: 點閱:323下載:1
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 自身終止高分歧寡聚物(Self-Terminated Oligomers Branched Architecture)簡稱STOBA,此電極添加劑能保護鋰離子電池短路情況。然而STOBA已不適用於現今要求,因此本研究藉由化學分枝法於正極表面上。3-氨基丙基三乙氧基矽烷(APTES)用作偶聯劑以此結合環氧二丙烯酸酯(EA)和巴比土酸(BTA)為EA / BTA。而矽烷化過程藉由乙醇作為溶劑是由於鈷酸鋰的陰極材料的表面上不存在羥基。
    純STOBA、STOBA摻EA/BTA、STOBA摻APTES與STOBA摻APTES-EA/BTA,此以上材料為本論文所研究。結果證實,正極材料之改質對電池性能有顯著影響。結果指出正極材料摻APTES-EA/BTA在第一圈放電電容量(充電至4.5V)提升至181.6mAh/gr,並於50圈後依然有89.75%之充放電電容量可逆比。對比於無添加之材料,表面改質有明顯改善於電池之高電壓應用


    Self-Terminated Oligomers Branched Architecture, known as STOBA, was found as an electrode additive in order to prevent short circuit in lithium ion battery. However, its reliability is not eligible for current requirement. In this research, a direct chemical branch method on cathode’s surface has been developed. 3-Aminopropyltriethoxysilane (APTES) is used as a coupling agent in which synthesis epoxy diacrylate (EA) and barbituric acid (BTA); EA/BTA. The silanization process was carried on ethanol as a solvent due to the absence of hydroxyl group on the surface of LiCoO2 cathode materials.
    In this work, five samples were studied, including bare (uncoated), coated with STOBA, coated with EA/BTA, coated with APTES and STOBA, and coated with APTES and EA/BTA. Our result indicated these modifications on cathode material shown a big impact for the battery performance. In terms of the result, APTES-EA/BTA coated cathode material shows 181.6 mAh/gr capacity at the first cycle (charge to 4.5 V) and life retention remained to 89.75% until 50 cycles. In comparison with bare material, this surface modification leads a significantly improvement for high power applications.

    Abstract Acknowledgement Table of Contents List of Figures List of Tables List of Schemes Chapter 1 Introduction 1.1 The Lithium-ion Battery 1.2 Lithium-ion Cobalt Battery (LiCoO2) 1.3 Improvement the Performance of Lithium-ion Battery 1.4 This Research Chapter 2 Literature Survey 2.1 Safety Concern of High-voltage Lithium-ion Battery 2.2 Silanization 2.3 3-Aminopropyltrethoxysilane (APTES) 2.4 N,N’-bismaleimide-4,4’-diphenylmethane (BMI) 2.5 Polymerization of N,N’-bismaleimide-4,4’-diphenylmethane with barbituric acid (STOBA) 2.6 Polymerization of Bisphenol A. Epoxy Diacrylate (EA) with barbituric acid (BTA) 2.7 Bisphenol A. Epoxy Diacrylate 2.8 Polar Protic Solvent Chapter 3 Research Methodology 3.1 Chemical Materials 3.2 Equipment 3.3 Experimental Procedure 3.3.1 Synthesis and Modification the Cathode Surface Materials 3.3.2 Synthesis the Self-Terminated Oligomers Branched Architecture (STOBA) and Epoxy Acrylate/ Barbituric Acid (EA/BTA) 3.3.3 Preparing Cathode Electrode Slurry 3.4 Electrochemical Measurement 3.4.1 Battery Coin Cell Assembling 3.4.2 Cyclic Voltammetry Measurement 3.4.3 Electrochemical Impedance Spectroscopy Test 3.5 Physical Characterization 3.5.1 Field Emission Scanning Electron Microscopy 3.6 Research Design Chapter 4 Result and Discussion 4.1 Physical Characterization of LiCoO2 Cathode that Coated and Uncoated 4.2 Electrochemical Characterization Chapter 5 Conclusion Reference

    [1].M. Silberberg, Chemistry: The Molecular Nature of Matter and Change, 4th Ed, New York (NY): McGraw-Hill Education, (2016) p 935, ISBN 0077216504.
    [2].O. Mehul, P. Jason, R. Zhao. AME 578 Project: A comparative study of LFP Batteries and Traditional Lithium-ion Batteries, University of South California, (2010) p 2-8.
    [3].L. Predoana, A. Barbu (Szentivanyi), M. Zaharescu, H. Vasilchina, N. Velinova, B. Banov, , A. Momchilov. Advance Techniques for LiCoO2 preparation and Testing. Proceeding of International Workshop, Sofia, Bulgaria, (2014).
    [4].http://batteryuniversity.com/learn/article/lithium_ion_safety_concerns, (accessed 27 Mei 2016).
    [5].S. Oh, J.K. Lee, D. Byun,W.I. Cho, B.W. Cho, J. Power Sources 132 (2004) 249–255.
    [6].J. Cho, Y.J. Kim, B. Park, Novel LiCoO2 cathode material with Al2O3 coating for a Li ion cell, Chem. Mater. 12 (2000) 3788–3791.
    [7].J. Cho, Y.J. Kim, B. Park, LiCoO2 cathode material that does not show a phase transition from hexagonal to monoclinic phase, J. Electrochem. Soc. 148 (10) (2001) A1110–A1115.
    [8].H.-J. Kweon, J.J. Park, J.W. Seo, G.B. Kim, B.H. Jung, H.S. Lim, Effects of metal oxide coatings on the thermal stability and electrical performance of LiCoO2 in a Li-ion cell, J. Power Sources 126 (2004) 156–162.
    [9].Z. Chen, J.R. Dahn, Effect of ZrO2 Coating on the Structure and Electrochemistry of LixCoO2 when Cycled to 4.5V, Electrochem. Solid-State Lett. 5 (10) (2002) A213–A216.
    [10].Z. Chen, J.R. Dahn, Methods to obtain excellent capacity retention in LiCoO2 cycled to 4.5 V, Electrochim. Acta 49 (2004) 1079–1090.
    [11].H.-W. Ha, N.J. Yun, M.H. Kim, M.H. Woo, K. Kim, Enhanced electrochemical and thermal stability of surface-modified LiCoO2 cathode by CeO2 coating, Electrochim. Acta 51 (2006) 3297–3302.
    [12].T. Fang, J.-G. Duh, S.-R. Sheen, LiCoO2 cathode material coated with nano-crystallized ZnO for Li-ion batteries, Thin Solid Films 469–470 (2004) 361–365.
    [13].T. Fang, J.-G. Duh, S.-R. Sheen, Improving the Electrochemical Performance of LiCoO2 Cathode by Nanocrystalline ZnO Coating, J. Electrochem. Soc. 152 (9) (2005) A1701–A1706.
    [14].W. Chang, J.W. Choi, J.C. Im, J.K. Lee, Effects of ZnO coating on electrochemical performance and thermal stability of LiCoO2 as cathode material for lithium-ion batteries, Journal of Power Sources 195 (2010) 320-326.
    [15].J. Cho, G. Kim, LiCoO2 Cathode Material with Al2O3 Coating for a Li Ion Cell, Electrochem. Solid State Lett. 2 (6) (1999) 253–255 , DOI: 10.1021/cm000511k.
    [16].F.M. Wang, S.C. Lo, C.S. Cheng, J.H. Chen, B.J. Hwang, H.C. Wu, Self-polymerized membrane derivative of branched additive for internal short protection of high safety lithium ion battery, Journal of Membrane Science 368 (2011) 165.
    [17].Y.H. Li, M.L. Lee, F.M. Wang, C.R. Yang, P.J. Peter Chu, J.P. Pan, Electrochimica Acta 85 (2012) 72.
    [18].F.M. Wang, H.M. Cheng, H.C. Wu, S.Y. Chu, C.S. Cheng, C.R. Yang, Electrochimica Acta 54 (2009) 3344.
    [19].K.S. Lee, Y.K. Sun, J. Noh, K.S. Song, D.W. Kim, Improvement of high voltage cycling performance and thermal stability of lithium–ion cells by use of a thiophene additive, Electrochemistry Communications 11 (2009) 1900-1903.
    [20].Y.K. Sun, J.M. Han, S.T. Myung, S.W. Lee, K. Amine, Significant improvement of high voltage cycling behavior AlF3-coated LiCoO2 cathode, Electrochemistry Communications 8 (2006) 821-826.
    [21].J. Cho, T.-J. Kim, B. Park, Zero‐strain intercalation cathode for rechargeable Li‐Ion cell, Angew. Chem. Int. Ed. 40. (2001) 3367-3369.
    [22].R.M. Pasternack, S. Rivillon Amy, Y.J. Chabal,. Attachment of 3-(Aminopropyl)triethoxysilane on silicon oxide surfaces: dependence on solution temperature, Langmuir (2008) 24, 12963-12971.
    [23].K. Xu, S.P Ding, T.R. Jow, Toward reliable values of electrochemical stability limits for electrolytes, Journal of the Electrochemical Society 146 (1999) 4172-4178.
    [24].Y. Xie, C.A.S. Hill, Z.Hiao, H. Militz, C. Mai, Silane coupling agents used for natural fiber/polymer composites: A review, Composites Part A 41 (2010) 806-819.
    [25].B. Seed, "APPENDIX 3E Silanizing Glassware". Current Protocols in Cell Biology: A.3E.1. (May 2001). doi:10.1002/0471143030.cba03es08.
    [26].W.A. Zisman, Surface Chemistry of Plastics Reinforced by Strong Fibers, Ind Eng Chem Prod Res Dev, 1969, 8(2), 98-111, DOI: 10.1021/i360030a002.
    [27].E.A. Smith, W. Chen, How to prevent the loss of surface functionality derived from aminosilanes, NIH Public Access, Langmuir author manuscript, 2008; 24 (21): 12405? 2409, doi:10.1021/la802234x.
    [28].H. Lee, K. Nevelle, Hand Book of Epoxy Resin, McGraw-Hill (1972) 1.
    [29].Q.T. Pham, J.M. Hsu, J.P. Pan, T.H. Wang, C.S. Chern, Synthesis and Characterization of phenylsiloxane/barbituric acid-based polymers with 3-aminopropyltriethoxysilane as the coupling agent, Polym. Int. (2012), http://dx.doi.org/10.1002/pi.4390.
    [30].J.P. Pan, G.Y. Shiau, S.S. Lin, K.M. Chen, Effect of barbituric acid on the self-polymerization reaction of bismaleimides, Journal of Applied Polymer Science, (1992), DOI: 10.1002/app.1992.070450112.
    [31].Michael, A. J. Prakt. Chem. 1887, 35, 349–356. Ueber die Addition von Natriumacetessig- und Natriummalonsäureäthern zu den Aethern ungesättigter Säuren, DOI: 10.1002/prac.18870350136.
    [32].B.D Mather, K. Viswanathan, K.M. Miller, and T. Long, Michael addition reactions in macromolecular design for emerging technologies, Prog. Polym. Sci., 31, (2006), 487-531.
    [33].M.S. Lin, M.W. Wang, L.A. Cheng, Photostabilization of an epoxy resin by forming interpenetrating polymer networks with bisphenol A Diacrylate, Polym. Degrad. Stab., 66 (1999), 343–347.
    [34].C.H. Park, S.W. Lee, J.W. Park, H.J. Kim, Preparation and characterization of dual curable adhesives containing epoxy and acrylate functionalities, React. Funct. Polym., 73 (2013), 641–646.
    [35].Y. Zhang, W. Xu, G. Liu, D. Qiu, S. Su, Preparation of ultraviolet-cured bisphenol A epoxy diacrylate/montmorillonite nanocomposites with a bifunctional, reactive, organically modified montmorillonite as the only initiator via in situ polymerization, J. Appl. Polym. Sci., 111 (2009), 813–818.
    [36].H.L. Su, J.M. Hsu, J.P. Pan, T.H. Wang, F.E. Yu, C.S. Chern, Kinetic and structural studies of the polymerization of N,N′-bismaleimide-4,4′-diphenylmethane with barbituric acid, Polym. Eng. Sci., 51 (2011), 1188–1197.
    [37].H.L. Su, J.M. Hsu, J.P. Pan, T.H. Wang, C.S. Chern, Effects of solvent basicity on free radical polymerizations of N,N′-bismaleimide-4,4′-diphenylmethane initiated by barbituric acid, J. Appl. Polym. Sci., 117 (2010), 596–603.
    [38].C.S. Chern, H.L. Su, J.M. Hsu, J.P. Pan, T.H. Wang, Understanding hyperbranched polymerization mechanisms, SPEPRO (2011) http://dx.doi.org/10.2417/spepro.003621.
    [39].Q.T. Pham, J.M. Hsu, J.P. Pan, T.H. Wang, C.S. Chern, Synthesis and characterization of phenylsiloxane-modified bismaleimide/barbituric acid-based polymers with 3-aminopropyltriethoxysilane as the coupling agent, Polym. Int., 62 (2013), 1045–1052.
    [40].Q. T Pham, J. M. Hsu, J.P. Pan, T.H. Wang, C.S. Chern, Non isothermal degradation of Bisphenol A diglycidyl ether Diacrylate-based polymers, Thermochimica Acta., 53 (2013), 10-17.
    [41].S. Oprea, S. Vlad, A. Stanciu, M. Macoveanu, Eur. Polym. J., 36 (2000), 373.
    [42].C.N. Cascaval, D. Rosu, A. Stoleriu, Polym. Deg. Stab., 55 (1997), 281
    [43].C.G. Roffey, Photopolymerization of Surface Coatings, JOCCA, 69 (1986), 288.
    [44].H. Panda, Rakhshinda, JOCCA, 65 (1982), 211.
    [45].D.H. Klein, Kjorg, T. Dinnissen, Epoxy Binders For The Protection Of Concrete, Surf. Coat. Int., 12 (1998), 558-593.
    [46].A. Noomen, JOCCA, 64 (1981), p. 347.
    [47].A. Udagawa, F. Sakurai, T. Takahashi, In situ study of photopolymerization by fourier transform infrared spectroscopy, J. Appl. Polym. Sci., 42 (1861) (1991), DOI: 10.1002/app.1991.070420707.
    [48].C.M. Seubert, M.E. Nichols, Alternative curing methods of UV curable automotive clearcoats, Prog. Org. Coat., 49 (2004), 218-224, doi:10.1016/j.porgcoat.2003.10.002.
    [49].R. Schwalm, L. HaÈussling, W. Reich, E. Beck, P. Enenkel, K. Menzel, Prog. Org. Coat., 32 (1997), 191.
    [50].D.K. Chattopadhyay, S.S. Panda, K.V.S.N. Raju, Thermal and mechanical properties of epoxy acrylate/methacrylates UV cured coatings, Progress in Organic Coatings, Volume 54, Issue 1, 1 September 2005, 10-19.
    [51].https://en.wikipedia.org/wiki/Protic_solvent (accessed 10 July 2016)
    [52].Q.T. Pham, J.M. Hsu, J.P. Pan, T.H. Wang, C.S. Chern, Kinetics of Free Radical Polymerization of Bisphenol A Diglycidyl Ether Diacrylate Initiated by Barbituric Acid, Thermochimica Acta 573 (2013), 121-129.
    [53].F. Croce, F. Nobili, A. Deptula, W. Lada, R. Tossici, A. D’Epifanio, B. Scrosati, R. Marassi,. Electrochem. Commun. 1999, 1, 605.
    [54].F. Nobili, F. Croce, B. Scrosati, R. Marassi, Electronic and Electrochemical Properties of Li x Ni1-y Co y O2 Cathodes Studied by Impedance Spectroscopy, Chem. Mater. 2001, 13, 1642-1646.
    [55].C.C. Lin, H.C. Wu, J.P. Pan, C.Y. Su, T.H. Wang, H.S. Sheu, N.L. Wu, Investigation on suppressed thermal runaway of Li-ion battery by hyper-branched polymer coated on cathode, Electrochimica Acta 101, (2013), 11-17, http://dx.doi.org/10.1016/j.electacta.2012.09.097.
    [56].H. Maleki, G. Deng, A. Anani, J. Howard, Thermal stability studies of Li-ion cells and components articles, Journal of the Electrochemical Society 146 (1999) 3224.

    QR CODE