簡易檢索 / 詳目顯示

研究生: 陳彥之
Yen-Chih Chen
論文名稱: 應用S_pkA於雙邊製程規格線性剖面資料的抽樣計畫
Applying S_pkA for Sampling Plan for Linear Profiles with Two-Sided Specifications
指導教授: 王福琨
Fu-Kwun Wang
口試委員: 林希偉
Shi-Woei Lin
羅士哲
Shih-Che Lo
學位類別: 碩士
Master
系所名稱: 管理學院 - 工業管理系
Department of Industrial Management
論文出版年: 2015
畢業學年度: 103
語文別: 中文
論文頁數: 49
中文關鍵詞: 線性剖面雙邊製程規格抽樣計畫供應商選擇
外文關鍵詞: Linear profiles, Two-sided specifications, Sampling plan, Supplier selection.
相關次數: 點閱:411下載:2
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

抽樣計畫在品質管理中扮演著重要的角色,抽樣計畫必須考量抽樣時所需之樣本大小及允收條件來對供應商進行判定。本研究利用當供應商製程資料呈現線性剖面時,並以雙邊製程規格為製程能力標準下,對製程能力指標S_pkA進行抽樣計畫,抽樣計畫所需之參數利用作業特性曲線 (Operating characteristic,OC curve),計算出檢定所需之臨界值,提供於決策者判定產品是否允收之依據。此外,再藉由皮革工業染色案例分析與說明以供參考。


Acceptance sampling plan plays an important role in quality control, when the quality of a process or product characteristic by a linear profile we have to consider number of profiles and critical acceptance values to judge for suppliers. This study shows that, when supplier process data presents for linear profiles and proceed sampling plan based on S_pkA with two-sided specifications based on process yield.
Sampling plan useing operating characteristic curve (OC curve) determining the plan parameters to calculate critical value for offering supervisor a basis to judge products between acceptable and rejectable quality levels. In addition, a real application on leather dyeing case is presented to illustrate the application of our proposed method.

摘要 I Abstract II 誌謝 III 目錄 IV 圖目錄 VI 表目錄 VII 第一章 緒論 1 1.1 研究動機 1 1.2 研究目的 1 1.3 研究範圍與限制 2 1.4 研究流程 2 第二章 文獻探討 5 2.1 線性剖面資料 5 2.2 製程能力指標 6 2.2.1常態資料製程能力指標 8 2.2.2雙邊製程能力指標S_pkA 9 2.2.3信賴下界 12 2.3 兩家剖面資料供應商選擇 14 2.4 供應商多重比較法 16 2.4.1 MCB方法應用於S_pk供應商選擇 18 2.5 允收抽樣計畫 19 第三章 研究方法 21 3.1 雙邊型線性剖面資料製程能力指標S_pkA 21 3.2 製程能力指標S_pkA應用在 k≥2個供應商選擇 22 3.3 檢定力分析 23 3.3.1情況一:水準數不同的情況 23 3.3.2 情況二:剖面資料個數不同的情況 26 3.4 單次允收抽樣計畫 28 第四章 案例分析 35 第五章 結論與建議 37 文獻參考 38 附錄 41

[1] Amiri, A., A. Zand and D. Soudbakhsh, “Monitoring simple linear profiles in the leather industry (A case study),” Proceedings of the 2011 International Conference on Industrial Engineering and Operations Management Kuala Lumpur, Malaysia, January 22–24 (2011).
[2] Edwards, D.G. and J.C. Hsu, “Multiple comparisons with the best treatment,” Journal of the American Statistical Association, 78, 965-967 (1983).
[3] Boyles, R.A., “Process capability with asymmetric tolerances,” Communications in Statistics-Simulation and Computation, 23, 615–635 (1994).
[4] Hsu, J.C., “Simultaneous confidence intervals for all distances form the best,” The Annals of Statistics, 9, 1026-1034 (1981)
[5] Hsu, J.C., “Constrained simultaneous confidence intervals for multiple comparisons with the best,” The Annals of Statistics,12,1136-1144 (1984)
[6] Kane, V.E., “Process capability indices,” Journal of Quality Technology, 18, 41-52 (1986).
[7] Kang, L. and S.L. Albin, “On-line monitoring when the process yield a linear profile,” Journal of Quality Technology, 32, 418–426 (2000).
[8] Lin, C.J. and W.L. Pearn, “Process selection for higher production yield based on capability index Spk,” Quality and Reliability Engineering International, 26, 247-258 (2010).
[9] Lin, C.J. and W.L. Pearn, “Group selection for production yield among k manufacturing lines,” Journal of Statistical Planning and Inference, 141, 1510-1518 (2011).
[10] Lin, C.J. and H.H. Kuo, “Multiple comparisons with the best for supplier Selection, ”Quality and Reliability Engineering International, 30, 1083-1092
37(2014).
[11] Pearn, W.L. and C.S. Chang, “An implementation of the precision index for contaminated processes,” Quality Engineering, 11, 101-110 (1998).
[12] Pearn, W.L. and C.H. Wu, “Supplier selection for multiple-characteristics processes with one-sided specifications,” Quality Technology and Quantitative Management, 10, 133-139 (2013).
[13] Pearn, W.L. and C.H. Wu, “Supplier selection critical decision values for processes with multiple independent lines,” Quality and Reliability Engineering International, 29, 899–909 (2013).
[14] Pearn, W.L., G.H. Lin and K.S. Chen, “Distributional and inferential properties of the process accuracy and process precision indices,” Communications in Statistics: Theory and Methods, 27, 985-1000 (1998).
[15] R Development Core Team, R: A Language and Environment for Statistical Computing, Vienna, Austria: R Foundation for Statistical Computing, (2014).
[16] Weber, C.L., J.R. Current and W.C. Benton, “Vendor selection criteria and methods,” European Journal of Operational Research, 50, 2–18 (1991).
[17] Walker, E. and S.P. Wright, “Comparing curves using additive models,” Journal of Quality Technology, 34, 118–129 (2002).
[18] Wu, C.W. and W.L. Pearn, “A variable sampling plan based on for product acceptance determination,” European Journal of Operational Research, 184,549-560 (2008).
[19] Wu, C.W. and S.W. Liu, “Developing a sampling plan by variables inspection for controlling lot fraction of defectives,” Applied Mathematical Modelling, 38, 2303-2310 (2014).
[20] Wu, C.W., M.Y. Liao and T.T. Yang, “Efficient methods for comparing two process yields – strategies on supplier selection,” International Journal of
38
Production Research, 51, 1587-1602 (2013).
[21] Wang, F.K., “A process yield for simple linear profiles,” Quality Engineering, 26, 311–318 (2014).
[22] Wang, F.K. and Y.C. Guo, “Measuring process yield for nonlinear profiles,” Quality and Reliability Engineering International, 30, 1333-1339 (2014). [23] Wang, F.K., Y. Tamirat and Y.S. Tsai, “Process selection for linear profiles with one-sided specifications based on the ratio test statistic,” Quality and Reliability Engineering International, DOI:10.1002/qre.1693 (2014).
[24] Sheu, C.L., C.H. Yeh., C.H. Yen and C.H. Chang, “Developing acceptance sampling plans based on incapability index ,” Applied Mathematics and Information Sciences, 8, 2509-2514 (2014).

QR CODE