簡易檢索 / 詳目顯示

研究生: 陳志宏
Jhih-Hong Chen
論文名稱: 無鹵素先驅物((BTMSA)CuI)2(C2O4)熱裂解動力學研究及有機金屬化學氣相沈積之銅膜性質探討
The Study on the Decomposition Kinetic of Halogen-free Precursor ((BTMSA)CuI)2(C2O4) and Properties of Copper Films by Metal-Organic Chemical Vapor Deposition
指導教授: 李嘉平
Chia-Pyng Lee
黃炳照
Bing-Joe Hwang
郭俞麟
Yu-Lin Kuo
口試委員: 林順堂
Shun-Tang Lin
李文鴻
Wen-Hung Li
學位類別: 碩士
Master
系所名稱: 工程學院 - 化學工程系
Department of Chemical Engineering
論文出版年: 2008
畢業學年度: 96
語文別: 中文
論文頁數: 114
中文關鍵詞: 金屬化學氣相成績無鹵素動力學
外文關鍵詞: chemical vapor deposition, halogen-free, Kinetic
相關次數: 點閱:254下載:1
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究以自行合成的有機金屬化合物((BTMSA)CuI)2(C2O4)作為先驅物,使用NMR與IR來確定先驅物的鍵結結構確實為((BTMSA)CuI)2(C2O4),並藉由TGA與DTA分析出先驅物在室溫下具有良好的熱穩定性,而先驅物熱裂解成銅的溫度約為228℃,由此可知((BTMSA)CuI)2(C2O4)確實可成為化學氣相沈積之先驅物。
    在先驅物熱裂解動力學中,利用所自行合成出來的先驅物,以不同的動力學模組加以計算,而動力學分析中,活化能皆為隨轉化率增加而降低,其原因在於在反應過程中為多重裂解反應,求得出第一段熱裂解活化能為220 kJ/mole下降至110 kJ/mole,第二段熱裂解的活化能為200 kJ/mole下降至90 kJ/mole。
    在化學氣相沈積系統中,調整沈積溫度及沈積時間,可以成長出高純度且具有相當良好之平坦度與緻密性的銅晶種;由於在沈積溫度310℃,沈積時間為30分鐘時,所成長之銅薄膜具有最佳的表面型態,因此將此條件在具有溝槽的TaNx/Si基材上成長銅晶核,並利用電鍍將溝槽填滿,其覆蓋效果相當良好且均勻。由以上研究結果顯示此((BTMSA)CuI)2(C2O4)先驅物可作為成長電鍍銅晶種層的先驅物。


    The copper(I) complex, ((BTMSA)CuI)2(C2O4), was synthesized in this study. The purity of ((BTMSA)CuI)2(C2O4) was examined by FTIR and NMR analyses. Furthermore, result of TGA and DTA were conducted to determine the thermal stability and decomposition temperature of the synthesized precursor, which indicated that self-synthesized ((BTMSA)CuI)2(C2O4) is adequate to be used as Cu-MOCVD precursors.
    In the behavior of thermal decomposition, the activation energy of ((BTMSA)CuI)2(C2O4) was calculated by two different kinetic models, KAS and Starink models. The results showed that the activation energy varied as a function of the conversion. It could be proposed that the process of thermal decomposition manifests a dependence of the activation energy upon the conversion. This result also suggested that the decomposition process of ((BTMSA)CuI)2(C2O4) is a multistep reaction.
    By the use of ((BTMSA)CuI)2(C2O4) as Cu-MOCVD precursors, conformal and pure copper films were deposited under various conditions. High quality Cu films with denser grains were deposited while deposition temperature and time were 310 °C and 30 minutes. The electrodepositing Cu was used on the Cu-MOCVD seed layer trenches. This experiment results succeeds in forming smooth and continuous thin copper films, which be used as high-quality seed layers for electroplating.

    摘 要 .………….…………………………………………………………..I Abstract II 致 謝 III 目 錄 V 圖索引 VII 表索引 XIV 第一章 緒論 1 1.1 深次微米元件金屬導線的選擇 1 1.2 金屬與擴散障壁層材料的選擇 4 第二章 文獻回顧 7 2.1 銅膜的沈積技術 7 2.2 銅膜的化學氣相沈積 10 2.3 銅之熱裂解動力學 18 2.4 研究動機 19 第三章 實驗設備與程序 21 3.1 實驗設備 21 3.1.1 合成系統 21 3.1.2 磁控射頻濺鍍系統 25 3.1.3 有機金屬化學氣相沈積系統 27 3.1.4 滯留時間(Residence Time)之計算 33 3.2 實驗藥品、材料及分析儀器 36 3.3 實驗程序 41 3.4 先驅物((BTMSA)CuI)2(C2O4)之合成 42 3.5 基材TaNx薄膜之製備 44 3.6 化學氣相沈積成長銅薄膜 48 第四章 結果與討論 52 4.1 先驅物((BTMSA)CuI)2(C2O4)之化學和熱分析 52 4.1.1先驅物((BTMSA)CuI)2(C2O4)之化學分析 52 4.1.2先驅物((BTMSA)CuI)2(C2O4)之熱分析 57 4.2 先驅物((BTMSA)CuI)2(C2O4)之熱裂解動力學分析 60 4.3由化學氣相沈積法所成長銅膜之材料分析 70 4.4 階梯覆蓋率 103 第五章 結論 106 第六章 參考文獻 108 作者簡介 114

    1. 陳力俊,微電子材料與製程,(2000),320.
    2. 張鼎張,奈米通訊期刊第四卷第3期,(1998),22。
    3. K.K Choi, S.W Rhee, Thin solid films, 397 (2001) 70.
    4. 張鼎張、鄭晃忠、楊正杰,毫微米通訊期刊第五卷第3期,(1998),22。
    5. 陳松德,黃獻慶,真空科技,第十一卷三、四期,27。
    6. S. P. Murarka, in G. C. Smith and R. Blumenthal(eds.), Materials research Society, Pittshurgh, PS, (1991) 179.
    7. C. A. Chang, Appl. Phys. Lett., 57 (1990) 617.
    8. J. S. H. Cho, Tech. Dig. of International Electron Devices Meeting, (1993) 265.
    9. J. S. H. Cho, EKE EDM Technical Digest, (1993) 265.
    10. Y. Shacham Diamand, J. Electrochem. Soc. 140 (1993) 2427.
    11. H. Ono, et al., Appl. Phys. Lett., 64 (1994) 1511.
    12. J. O. Olowolafe, C. J. Mogab., J. Appl. Phys. 72 (1992) 4099.
    13. K. Holloway, P. M. Fryer, C. Cabral, Jr. , J. M. E. Harper, P. J. Bailey, and K. H. Kelleher, J. Appl. Phys.71 (1992) 5433.
    14. M. H. Tsai, S. C. Sun, Appl. Phys. Lett. 67 (1995) 1128.
    15. K. Wakasugi, M. Tokunaga, T. Sumita, H. Kubota, M. Nagata, and Y.Honda, Physica B, 239 (1997) 29.
    16. M. H. Tsai, S. C. Sun, C. P. Lee, H. T. Chiu, C. E. Tsai, S. H.Chuang, and S. C. Wu, Thin Solid Films, 270 (1995) 531.
    17. 吳文發,黃麒峰,毫微米通訊,第六卷,民國八十八年,30。
    18. K. H. Min, K. C. Chun, and K. B. Kim, J. Vac. Sci. Technol. B 14 (1996) 3263.
    19. 林俊成,RF 濺鍍成長TaNX薄膜及其在積體電路之銅製程上
    的應用,台灣科技大學化工所,民國八十八年。
    20. N. Awaya, K. Ohno, and Y Arita, J. Electrochem. Soc., 142 (1995) 939.
    21. H. K. Shin, M. J. Hampden-Smith, E. N. Duesler, and T. T. Kodas, Inorg. Chem., Polyhedron, 10 (1991) 645.
    22. M. J. Hampden-smith, T. T. Kodas, Polyhedron, 14 (1995) 669.
    23. M. E. Gross, C. Lingk, W. L. Brown, R. Drese, Solid State Tech. , August ( 1999) 47.
    24. H. K. Shin, K. M. Chi, J. Farkas, M. J. Hampden-Smith, T. T. Kodas, and E. N. Duesler, Inorg. Chem., 31 (1992) 424.
    25. M. J. Hampden-Smith, T. T. Kodas, M. Paffett, J. D. Farr, and H. K. Shin, Chem. Mater., 2 (1990) 636.
    26. I. A. Rauf, R. Siemsen, M. Grunwell, R. F. Egerton, and M. Sayer, J. Mater. Res., 14 (1999) 4345.
    27. W. J. Lee, J. S. Min, S. K. Rha, S. S. Chun, C. O. Park, and D. W. Kim, J. Mater. Sci., Mater. Electron., 7 (1996) 111.
    28. A. Jain, K.-M. Chi, T. T. Kodas, and M. J. Hampden-Smith, J. Electrochem. Soc., 140 (1993) 1434.
    29. J. A. T. Norman, D. A. Roberts, A. K. Hochberg, P. Smith, G. A. Petersen, J. E. Parmeter, C. A. Apblett, and T. R. Omstead, Thin Solid Films, 262 (1995) 46.
    30. S. Kim, J. M. Park, D. J. Choi, Thin Solid Films, 320 (1998) 95.
    31. G. Doyle, K. A. Eriksen, and D. V. Engen, Organometallics., 4 (1985) 830.
    32. R. Kumar, F. R. Fronczek, A. W. Maverick, W. G. Lai, and G. L. Griffin, Chem. Mater., 4 (1992) 577.
    33. K. M. Chi, H.-K. Shin, M. J. Hampden-Smith, E. N. Duesler, and T. T. Kodas, Polyhedron, 10 (1991) 2293.
    34. T. H. Baum, C. E. Larson, and G. May, J. Organomet. Chem., 425 (1992) 189.
    35. S. W. Rhee, S. W. Kang, and S. H. Han, Electrochemical and Solid-State Letters, 3 (2000) 135.
    36. L. H. Dubois and B. R. Zegarski, J. Electrochem. Soc., 139 (1992) 3295.
    37. S. L. Cohen, M. Liehr, and S. Kasi, Appl. Phys. Lett., 60 (1992) 50.
    38. S. L. Cohen, M. Liehr, and S. Kasi, Appl. Phys. Lett., 60 (1992) 1585.
    39. T. Q. Cheng, K. Griffiths, P. R. Norton, and R. J. Puddephatt, Appl. Surf. Sci., 126 (1998) 303.
    40. S. K. Reynolds, C. J. Smart, E. F. Baran, T. H. Baum, C. E. Larson, and P. J. Brock, Appl. Phys. Lett., 59 (1991) 2332.
    41. S. L. Cohen, M. Liehr, and S. Kasi, J. Vac. Sci. Technol. A 10 (1992) 863.
    42. A. Jain, K. M. Chi, M. J. Hampden-Smith, T. T. Kodas, J. D. Farr, and M. F. Paffett, J. Mater. Res., 7 (1992) 261.
    43. C. Roger, T. S. Corbitt. M. J. Hampden-Smith, and T. T. Kodas, Appl. Phys. Lett., 65 (1994) 1021.
    44. J. Farkas, M. J. Hampden-Smith, and T. T. Kodas, J. Phys. Chem., 98 (1994) 6763.
    45. A. Jain, K.-M. Chi, T. T. Kodas, M. J. Hampden-Smith, J. D. Farr, and M. F. Paffett, Chem. Mater., 3 (1991) 995.
    46. T. H. Baum and C. E. Larson, J. Electrochem. Soc., 140 (1993) 154.
    47. Z. Hammadi, B. Lecohier, and H. Dallaporta, J. Appl. Phys., 73 (1993) 5213.
    48. M. Utriainen, M. Kröger-Laukkanen, L. S. Johansson, and L. Niinistö, Appl. Surf. Sci., 157 (2000) 151.
    49. Shyam P.Murarka and S.W.Hymes, Crit. Rev. Solid State Mater. Sci., 20 (1995) 87.
    50. D. H. Kim, R. H. Wentorf, and W. N. Gill, J. Electrochem. Soc., 140 (1993) 3273.
    51. N. S. Borgharkar and G. L. Griffin, J. Electrochem. Soc., 145 (1998) 347.
    52. J. Y. Kim, P. J. Reucroft, D. K. Park, Thin Solid Films, 289 (1996) 184.
    53. D. Temple, and A. Reisman, J. Electrochem. Soc., 136 (1989) 3525.
    54. A.F.Kaloyeros and M.A.Fury, MRS Bull., 18 (1993) 22.
    55. R. L. van Hemert, L. B. Spendlove and R. E. Sievers, J. Electrochem. Soc., 112, (1965), 1123.
    56. W. G. Lai, Y. Xie, G. L. Griffin, J. Electrochem. Soc., 138 (1991) 3499.
    57. Y. Pauleau and A. Y. Fasasi, Chem. Mater., 3 (1991) 45.
    58. S. C. Goel, K. S. Kramer, M. Y. Chiang and W. E. Buhro, Polyhedron, 9 (1990) 611.
    59. V. L. Young, D. F. Cox and M. E. Davis, Chem. Mater., 5 (1993) 1701.
    60. J. W. Park, H. S. Jang, M. Kim, K. Sung, S. S. Lee, T. M. Chung, S. Koo, C. G. Kim and Y. Kim, Inorg. Chem. Commun., 7 (2004) 463.
    61. R. Becker, A. Devi, J. Weiβ, U. Weckenmann, M. Winter, C. Kiener, H. W. Becker and R. A. Fischer, Chemical Vapor Deposition, 9, 3 (2003) 149.
    62. K. Köhler, J. Eichhorn, F. Meyer, D. Vidovic , J. Organomet. Chem., 22 (2003) 4426.
    63. J. Teichgräber, S. Dechert, F. Meyer, J. Organomet. Chem., 690 (2005) 5255.
    64. G. Chen, C. Lee, Y. Kuo, Y. Yen, Thermochim. Acta., 456 (2007) 89.
    65. S. Vyazovkin, Daivd dollimore, J. chem. inf. comput. sci., 36 (1996) 42.
    66. Y. K. Chae and H. Komiyama, J. Appl. Physi., 90 (2001) 3610.

    QR CODE