簡易檢索 / 詳目顯示

研究生: 丁昭崴
Chao-Wei Ting
論文名稱: 反應性濺鍍法製備錫摻雜氮化鎵及氮化銦鎵薄膜與其特性分析
Processing and Property Characterization of Sn-Doped GaN and InGaN Thin Films Prepared by Reactive Sputtering
指導教授: 郭東昊
Dong-Hau Kuo
口試委員: 何清華
Ching-Hwa Ho
薛人愷
Ren-Kae Shiue
學位類別: 碩士
Master
系所名稱: 工程學院 - 材料科學與工程系
Department of Materials Science and Engineering
論文出版年: 2016
畢業學年度: 104
語文別: 中文
論文頁數: 121
中文關鍵詞: 濺鍍錫摻雜氮化鎵錫摻雜氮化銦鎵薄膜電特性p-n 二極體
外文關鍵詞: Sputtering, n-type Sn-doped GaN, n-type Sn-doped InGaN, Thin films, Electrical property, p-n juntion.
相關次數: 點閱:253下載:1
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本論文以RF反應性濺鍍法製備n型Sn摻雜GaN及InGaN薄膜,並將摻雜不同成分之Sn-x GaN薄膜與p-type Silicon基板堆疊製作成p-n二極體,進而觀察其電特性。於本實驗中我們利用EDS、SEM、AFM、XRD、霍爾效應量測儀、紫外光、可見光/近紅外光分析儀以及TEM等儀器來分析薄膜特性,故本論文的研究主要可以分成五個部分。
    第一部分為利用RF反應式濺鍍法在p-Si基板上沉積Sn-x GaN薄膜(x = 0、0.03、0.07與0.1),使用靶材為Sn + Ga + GaN 陶金靶材,濺鍍功率為120瓦、沉積溫度為400 oC,並在濺鍍時固定氬氣與氮氣的流量,觀測Sn含量的改變對薄膜特性的影響。由XRD分析可知Sn-x GaN薄膜皆為纖維鋅礦結構,且其薄膜的成長優選方向為(10-10)結晶平面,而(10-10)結晶平面的繞射峰會隨著薄膜內Sn含量增加而往低角度偏移。從霍爾效應量測結果可以得知當x = 0.03時,對於提升GaN摻雜薄膜之載子濃度具有最佳之效益比,薄膜內部載子濃度為2.85x10^18 cm-3,載子遷移率為0.31 cm^2V^-1s^-1。從UV吸收光譜計算Sn-x GaN薄膜,當x從0 增加至0.1時,薄膜能隙則從3.18 eV下降至2.49 eV。
    第二部分為利用RF反應式濺鍍法在p-Si基板上使用不同濺鍍功率製備Sn-0.03 GaN薄膜,沉積溫度為400 oC,觀察濺鍍功率為90、120及150瓦對於薄膜特性之影響。XRD分析顯示Sn-0.03 GaN薄膜於不同濺鍍功率下皆為纖維鋅礦結構,且薄膜的成長優選方向為(10-10)結晶平面,而其結晶性將隨功率增加而提升。從霍爾效應量測結果可以得知當濺鍍功率為150瓦時,薄膜具有最高之載子濃度,其載子濃度為2.54x10^19 cm-3,載子遷移率為20.4 cm^2V^-1s^-1。利用UV吸收光譜計算Sn-0.03 GaN薄膜的能隙,當濺鍍功率由90瓦提升至150瓦後,薄膜能隙則從3.17 eV下降至2.62 eV。
    第三部分則是利用RF反應式濺鍍法在p-Si基板上於不同沉積溫度下製備Sn-0.03 GaN薄膜,濺鍍功率為150瓦,觀察沉積溫度為100、200、300及400 oC對於薄膜特性之影響。XRD分析顯示Sn-0.03 GaN薄膜於不同沉積溫度下皆為纖維鋅礦結構,且薄膜的成長優選方向為(10-10)結晶平面,而其結晶性將隨溫度增加而提升。從霍爾效應量測結果可以得知當沉積溫度為400 oC時,薄膜具有最高之載子濃度,其結果同第二部分,而當沉積溫度降至100 oC後,載子濃度降至1.6x10^17 cm-3,載子遷移率為167 cm^2^V-1s^-1。利用UV吸收光譜計算Sn-0.03 GaN薄膜的能隙,當沉積溫度由100 oC提升至400 oC後,薄膜能隙則從2.83 eV下降至2.62 eV。
    第四部份則是利用RF反應式濺鍍法將Sn-x GaN薄膜與p-Si基板製備成薄膜二極體,其中Sn-x GaN (x = 0、0.03、0.07與0.1)二極體的啟動電壓分別為0.6、2.0、3.8與5.3 V,在-1V的漏電流密度則分別為2.31x10^-5、6.28x10^-5、4.25x10^-6與2.28x10^-7 A/cm2,崩潰電壓皆高於-20V。並且利用熱電子發射理論中的標準二極體方程式計算出Sn-x GaN (x = 0、0.03、0.07與0.1)之p-n二極體之能障分別為0.59、0.68、0.71及0.88 eV,表示Sn含量越高,將提高p-n二極體能障。
    第五部分則是利用RF反應式濺鍍法在p-Si基板上於不同沉積溫度下製備Sn-0.07 InGaN薄膜,使用靶材為Sn + In + Ga + GaN陶金靶,濺鍍功率為120瓦,並在濺鍍時固定氬氣與氮氣的流量,觀察沉積溫度為100、200、300及400 oC對於薄膜特性之影響。XRD分析顯示Sn-0.03 InGaN薄膜於不同沉積溫度下皆為纖維鋅礦結構,且薄膜的成長優選方向為(10-10)結晶平面。從霍爾效應量測結果可以得知當沉積溫度為400 oC時,薄膜具有最高之載子濃度,其載子濃度為1.5x10^19 cm^-3,載子遷移率為40 cm^2V^-1s^-1。利用UV吸收光譜計算Sn-0.07 InGaN薄膜的能隙,當沉積溫度由100 oC提升至400 oC後,薄膜能隙則從2.66 eV下降至2.50 eV。


    In this research, we successfully deposited n-type tin-doped GaN and InGaN (Sn-GaN、Sn-InGaN) films by RF sputtering with single cermet targets. All the thin films were analyzed by EDS, SEM, TEM, AFM, XRD, Hall Effect measurement, and UV. This study was divided into five parts.
    The first part is about Sn-x GaN films (x = 0, 0.03, 0.07 and 0.1). The Sn-x GaN films were deposited on Si (100) substrate by RF sputtering with single (Sn + Ga + GaN) cermet target in an Ar/N2 atmosphere. The cermet targets were made by hot pressing. The deposition temperature was 400 oC. The Sn-x GaN films had a wurtzite structure with a preferential (10-10) growth plane. As x value of the Sn-x GaN increased to 0.03, the carrier concentration increase to 2.85x10^18 cm^-3 and carrier mobility is 0.31 cm^2V^-1s^-1. The energy bandgap of Sn-x GaN films decreased from 3.18 to 2.49 eV, as x value increased from 0 to 0.1. The changes in electric conductivity and bandgap explain the changes in the Sn solubility with increasing in sputtering power.
    The second part is about Sn-0.03 GaN deposited under different powers. The deposition temperature was 400 oC and sputter powers were 90、120, and 150 watt. The Sn-0.03 GaN films had a wurtzite structure with a preferential (10-10) growth plane. Its crystallinity would increase with power. As power increased to 150 watt, the carrier concentration increased to 2.54x10^19 cm^-3 and carrier mobility was 20.4 cm2V-1s-1. The energy bandgap of Sn-0.03 GaN films decreased from 3.17 to 2.62 eV, as power increased from 90 to 150 watt. The changes in electric conductivity and bandgap explain the changes in the Sn solubility with increasing in sputtering power.
    The third part is to deposit Sn-0.03 GaN thin films at 150 watt with different growth temperatures. The Sn-0.03 GaN films had a wurtzite structure with a preferential (10-10) growth plane. Its crystallinity increased with temperature. As temperature increased to 400oC, the carrier concentration increased to 2.54x10^19 cm^-3 and carrier mobility was 20.4 cm^2V^-1s^-1 as same as the second part. And we deposited it at 100 oC , the carrier concentration decreased to 1.6x10^17 cm^-3 and carrier mobility was 167 cm^2V^-1s^-1. The energy bandgap of Sn-0.03 GaN films decreased from 2.83 to 2.62 eV, as temperature increased from 100 to 400 oC to increase the Sn solubility in GaN.
    The fourth part is about Sn-x GaN p-n diode. The p-n diode was piled on p-Si substrate by RF sputtering. The current-voltage (I-V) curves of the p-n diode tested at room temperature were performed. The I-V curves exhibited excellent rectifying behavior. Under the forward bias, the turn-on voltage of Sn-x GaN diode at x = 0、0.03、0.07 and 0.1 was 0.6、2.0、3.8, and 5.3 V, respectively. Their leakage currents of Sn-x GaN diode were 2.31x10^-5、6.28x10^-5、4.25x10^-6 and 2.28x10^-7 A/cm2 at -1 V and their with breakdown voltages higher than -20 V. The ideality factors and the barrier heights were calculated by using equations based on the standard thermionic-emission mode. The barrier heights of Sn-x GaN diode (x = 0、0.03、0.07 and 0.1) diodes were 0.59、0.68、0.71 and 0.88 eV, respectively. It indicates that the barrier height increases with tin content.
    The final part is to sputter Sn-0.07 InGaN thin films at 120 watt with deposition temperatures of 100、200、300、and 400 oC. The Sn-0.07 InGaN films had a wurtzite structure with a preferential (10-10) growth plane. As temperature increased to 400 oC, the carrier concentration increased to 1.5x10^19 cm^-3 and carrier mobility is 40 cm^2V^-1s^-1. The energy bandgap of Sn-0.07 InGaN films decreased from 2.66 to 2.50 eV, as temperature increased from 100 to 400 oC to slightly increase the Sn solubility.

    摘要 ABSTRACT 致謝 目錄 圖目錄 表目錄 CHAPTER 1 緒論 1.1 前言 1.2 研究動機與目的 CHAPTER 2 文獻回顧與原理 2.1 氮化鎵 (Gallium Nitride, GaN)介紹 2.2 施體摻雜之氮化鎵 ( Donor-Doped Gallium Nitride) CHAPTER 3 實驗方法與步驟 3.1 實驗材料及規格 3.2 實驗儀器說明 3.2.1 RF反應式濺鍍系統 3.2.2 真空熱壓機 3.2.3 高溫真空管型爐系統 3.2.4 超音波震盪機 3.3 實驗步驟 3.3.1 靶材粉末配置 3.3.2 熱壓靶材 3.3.3 基板裁切與清洗 3.3.4 薄膜濺鍍 3.3.5 製備元件 3.3.6 TEM試片製備 3.3.7 薄膜特性量測 3.4 分析儀器介紹及量測參數 3.4.1 高解析度場發射掃描式電子顯微鏡 (Field Emission Scanning Electron Microscope, FESEM) 3.4.2 高功率X光繞射儀 (High Power X-Ray Diffractometer, XRD) 3.4.3 原子力顯微鏡 (Atomic Force Microscope, AFM) 3.4.4 霍爾效應量測系統 (Hall Effect Measurement System) 3.4.5 紫外光、可見光/近紅外光分析儀(UV-Vis/NIR spectrophotometer, UV) 3.4.6 半導體裝置分析儀 (Semiconductor Device Parameter Analyzer) 3.4.7 場發射雙束型聚焦離子束顯微鏡 (Dual Beam Focused Ion Beam, FIB) 3.4.8 場發射穿透式電子顯微鏡 (Field Emission Gun Transmission Electron Microscopy,FEG-TEM) CHAPTER 4 結果與討論 4.1 不同Sn摻雜量之GaN薄膜特性分析及探討 4.1.1 不同Sn摻雜量之Sn-x GaN薄膜成分分析 4.1.2 不同Sn摻雜量之Sn-x GaN薄膜SEM分析 4.1.3 不同Sn摻雜量之Sn-x GaN薄膜XRD分析 4.1.4 不同Sn摻雜量之Sn-x GaN薄膜霍爾效應電性量測 4.1.5 不同Sn摻雜量之Sn-x GaN薄膜AFM分析 4.1.6 不同Sn摻雜量之Sn-x GaN薄膜光學性質分析 4.1.7 Sn摻雜之Sn-x GaN薄膜TEM及Mapping分析 4.2 不同濺鍍功率之Sn-GaN薄膜特性分析及探討 4.2.1 不同濺鍍功率之Sn-GaN薄膜成分分析 4.2.2 不同濺鍍功率之Sn-GaN薄膜SEM分析 4.2.3 不同濺鍍功率之Sn-GaN薄膜XRD分析 4.2.4 不同濺鍍功率之Sn-GaN薄膜霍爾效應電性量測 4.2.5 不同濺鍍功率之Sn-GaN薄膜AFM分析 4.2.6 不同濺鍍功率之Sn-GaN薄膜光學性質分析 4.3 不同沉積溫度之Sn-GaN薄膜特性分析及探討 4.3.1 不同沉積溫度之Sn-GaN薄膜成分分析 4.3.2 不同沉積溫度之Sn-GaN薄膜SEM分析 4.3.3 不同沉積溫度之Sn-GaN薄膜XRD分析 4.3.4 不同沉積溫度之Sn-GaN薄膜霍爾效應電性量測 4.3.5 不同沉積溫度之Sn-GaN薄膜AFM分析 4.3.6 不同沉積溫度之Sn-GaN薄膜光學性質分析 4.4 Sn-GaN之二極體電性分析及探討 4.5 不同沉積溫度之Sn-InGaN薄膜特性分析談討 4.5.1 不同沉積溫度之Sn-InGaN薄膜成分分析 4.5.2 不同沉積溫度之Sn-InGaN薄膜SEM分析 4.5.3 不同沉積溫度之Sn-InGaN薄膜XRD分析 4.5.4 不同沉積溫度之Sn-InGaN薄膜霍爾效應電性量測 4.5.5 不同沉積溫度之Sn-InGaN薄膜AFM分析 4.5.6 不同沉積溫度之Sn-InGaN薄膜光學性質分析 CHAPTER 5 結論 CHAPTER 6 參考文獻

    1.W. Saito, T. Domon, I. Omura, M. Kuraguchi, Y. Takada, K. Tsuda, and M. Yamaguchi, Demonstration of 13.56-MHz class-E amplifier using a high-voltage GaN power-HEMT. IEEE Electron Device Letters, 27 (2006) 326-328.
    2.P. M. Cabral, J. C. Pedro, and N. B. Carvalho, Nonlinear device model of microwave power GaN HEMTs for high power-amplifier design. IEEE Transactions on Microwave Theory and Techniques, 52 (2004) 2585-2592.
    3.I. Daumiller, C. Kirchner, M. Kamp, K. J. Ebeling, and E. Kohn, Evaluation of the temperature stability of AlGaN/GaN heterostructure FETs. IEEE Electron Device Letters, 20 (1999) 448-450.
    4.S. C. Binari, K. Doverspike, G. Kelner, H. B. Dietrich, and A. E. Wickenden, GaN FETs for microwave and high-temperature applications. Solid-State Electronics, 41 (1997) 177-180.
    5.H. Morkoç, A. Di Carlo, and R.Cingolani, GaN-based modulation doped FETs and UV detectors. Solid-State Electronics, 46 (2002) 157-202.
    6.B. Jacobs, M. C. J. C. M. Kramer, E. J. Geluk, and F. Karouta, Optimisation of the Ti/Al/Ni/Au ohmic contact on AlGaN/GaN FET structures.Journal of Crystal Growth, 241 (2002) 15-18.
    7.U. K. Mishra, P. Parikh, and Y. F. Wu, AlGaN/GaN HEMTs-an overview of device operation and applications. Proceedings-IEEE, 90 (2002) 1022-1031.
    8.M. Kanamura, T. Ohki, T. Kikkawa, K. Imanishi, T. Imada, A. Yamada, and N. Hara, Enhancement-mode GaN MIS-HEMTs with n-GaN/i-AlN/n-GaN triple cap layer and high-gate dielectrics. IEEE Electron Device Letters, 31 (2010) 189-191.
    9.X. L. Wang, C. M. Wang, G. X. Hu, J. X. Wang, T. S. Chen, G. Jiao, J. P. Li, Y. P. Zeng and J. M. Li, Improved DC and RF performance of AlGaN/GaN HEMTs grown by MOCVD on sapphire substrates. Solid-State Electronics, 49 (2005) 1387-1390.
    10.A. M. Streltsov, K. D. Moll, A. L. Gaeta, P. Kung, D. Walker, and M. Razeghi, Pulse autocorrelation measurements based on two-and three-photon conductivity in a GaN photodiode. Applied Physics Letters, 75 (1999) 3778-3780.
    11.D. K. Hwang, S. H. Kang, J. H. Lim, E. J. Yang, J. Y. Oh, J. H. Yang, and S. J. Park, p-ZnO/n-GaN heterostructure ZnO light-emitting diodes.Applied Physics Letters, 86 (2005) 222101.
    12.H. Song, S. Lee, Red light emitting solid state hybrid quantum dot–near-UV GaN LED devices. Nanotechnology, 18 (2007) 255202.
    13.J. K. Sheu, S. J. Chang, C. H. Kuo, Y. K. Su, L. W. Wu, Y. C. Lin, W. C. Lai, J. M. Tsai, G. C. Chi, and R. K. Wu, White-light emission from near UV InGaN-GaN LED chip precoated with blue/green/red phosphors. IEEE Photonics Technology Letters,15 (2003) 18-20.
    14.C. S. Gallinat, G. Koblmüller, J. S. Brown, S. Bernardis, J. S. Speck, G. D. Chern, E. D. Readinger, H. Shen, and M. Wraback, In-polar InN grown by plasma-assisted molecular beam epitaxy. Applied Physics Letters, 89 (2006) 032109.
    15.T. Inushima, M. Higashiwaki, T. Matsui, Optical properties of Si-doped InN grown on sapphire (0001). Physical Review B, 68 (2003) 235204.
    16.G. Shikata, S. Hirano, T. Inoue, M. Orihara, Y. Hijikata, H. Yaguchi, and S. Yoshida, RF-MBE growth of a-plane InN on r-plane sapphire with a GaN underlayer. Journal of Crystal Growth, 301 (2007) 517-520.
    17.W. M. Yim, E. J. Stofko, P. J. Zanzucchi, J. I. Pankove, M. Ettenber and S. L. Gilbert, Epitaxially grown AlN and its optical band gap. Journal of Applied Physics, 44 (1973) 292-296.
    18.H. Yamashita, K. Fukui, S. Misawa, and S. Yoshida, Optical properties of AlN epitaxial thin films in the vacuum ultraviolet region. Journal of Applied Physics, 50 (1979) 896-898.
    19.呂彥興, Applications of Ga-doped ZnO Contact on GaN-based LED, 國立成功大學光電科學與工程研究所碩士學位論文, 2007.
    20.W. C. Johnson, J.B. Parson, and M. C. Crew, Nitrogen compounds of gallium. III. The Journal of Physical Chemistry, 36 (1932) 2651-2654.
    21.H. P. Maruska, J. J. Tietjen, The preparation and properties of Vapor‐Deposited single‐crystal‐line GaN. Applied Physics Letters, 15 (1969) 327-329.
    22.J. K. Sheu, S. J. Chang, C. H. Kuo, Y. K. Su, L.W. Wu, Y. C. Lin, W. C. Lai, J. M. Tsai, G. C. Chi, and R. K. Wu, White-light emission from near UV InGaN-GaN LED chip precoated with blue/green/red phosphors. IEEE Photonics Technology Letters,15 (2003) 18-20.
    23.A. M. Dabiran,A. M. Wowchak, A. Osinsky, J. Xie, B. Hertog, B. Cui, D. C. Look and P. P. Chow, Very high channel conductivity in low-defect AlN/GaN high electron mobility transistor structures. Applied Physics Letters, 93 (2008) 082111.
    24.蔡妙嬋, Investigation of Polarization-Related Effect on Blue InGaN Light-Emitting Diodes, 國立彰化師範大學光電科技研究所碩士學位論文, 2008.
    25.賴彥霖, Microstructure and optical properties of InGaN/GaN multiplequantum wells comprised of InGaN dots, 國立成功大學材料科學與工程學系博士學位論文, 2006.
    26.S. Strite, M. E. Lin, and H. Morkoc, Progress and prospects for GaN and the III–V nitride semiconductors. Thin Solid Films, 231 (1993) 197-210.
    27.S. Yoshida, S. Misawa, and S. Gonda, Improvements on the electrical and luminescent properties of reactive molecular beam epitaxially grown GaN films by using AlN‐coated sapphire substrates. Applied Physics Letters, 42 (1983) 427-429.
    28.R. F. Xiao, H. B. Liao, N. Cue, X. W. Sun, and H. S. Kwok, Growth of c‐axis oriented gallium nitride thin films on an amorphous substrate by the liquid‐target pulsed laser deposition technique. Journal of Applied Physics, 80 (1996) 4226-4228.
    29.R. Q. Fareed, S. Juodkazis, S. H. Chung, T. Sugahara, and S. Sakai, Structural studies on MOCVD grown GaN and AlGaN using atomic force microscopy. Materials Chemistry and Physics, 64 (2000) 260-264.
    30.C. W. Zou, M. L. Yin, M. Li, L. P. Guo, and D. J. Fu, GaN films deposited by middle-frequency magnetron sputtering. Applied Surface Science, 253 (2007) 9077-9080.
    31.C. G. Van de Walle,C. Stampfl, and J. Neugebauer, Theory of doping and defects in III–V nitrides. Journal of Crystal Growth, 189 (1998) 505-510.
    32.S. Nakamura, T. Mukai, and M. Senoh, Si-and Ge-doped GaN films grown with GaN buffer layers. Japanese Journal of Applied Physics, 31 (1992) 2883-2888.
    33.H. Murakami, T. Asahi, H. Amano,K. Hiramatsu, N. Sawaki, and I. Akasaki, Growth of Si-doped Al x Ga 1–x N on (0001) sapphire substrate by metalorganic vapor phase epitaxy. Journal of Crystal Growth, 115 (1991) 648-651.
    34.S. I. Molina, A. M. Sanchez, F. J. Pacheco, R. Garcıa, M. A. Sánchez-Garcıa, F. J. Sanchez, and E. Calleja, The effect of Si doping on the defect structure of GaN/AlN/Si (111). Applied Physics Letters, 74 (1999) 3362-3364.
    35.Q. Mao, Z. Ji, J. Xi, H. He, and H. Cao, Theoretical studies of low strain n-type GaN co-doped by Si and Sn. Physica B: Condensed Matter, 405 (2010) 145-147.
    36.S. D. Kirby and R. B. Van Dover, Improved conductivity of ZnO through codoping with In and Al. Thin Solid Films, 517 (2009) 1958-1960.
    37.S. Suwanboon, P. Amornpitoksuk, A. Haidou, and J. C. Tedenac, Structural and optical properties of undoped and aluminium doped zinc oxide nanoparticles via precipitation method at low temperature. Journal of Alloys and Compounds, 462 (2008) 335-339.
    38.S. Muthukumaran and R. Gopalakrishnan, Structural, FTIR and photoluminescence studies of Cu doped ZnO nanopowders by co-precipitation method. Optical Materials, 34 (2012) 1946-1953.
    39.S. Strite, H. Morkoç, GaN, AlN, and InN: a review. Journal of Vacuum Science & Technology B, 10 (1992) 1237-1266..
    40.R. T. Shannon, Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides. Acta Crystallographica Section A: Crystal Physics, Diffraction, Theoretical and General Crystallography, 32 (1976) 751-767.
    41.H. W. Kim, N. H. Kim, Preparation of GaN films on ZnO buffer layers by rf magnetron sputtering. Applied Surface Science, 236 (2004) 192-197.
    42.I. Chyr, B. Lee, L. C. Chao, A. J. Steckl, Damage generation and removal in the Ga+ focused ion beam micromachining of GaN for photonic applications. Journal of Vacuum Science & Technology B, 17 (1999) 3063-3067.
    43.J. Neugebauer, C. G. Van de Walle, Atomic geometry and electronic structure of native defects in GaN. Physical Review B, 50 (1994) 8067.
    44.T. Mattila, R. M. Nieminen, Point-defect complexes and broadband luminescence in GaN and AlN. Physical Review B, 55 (1997) 9571.
    45.G. Sanon, R. Rup, A. Mansingh, Band-gap narrowing and band structure in degenerate tin oxide (SnO2) films. Physical Review B, 44 (1991) 5672.
    46.R. K. Gupta, F. Yakuphanoglu, K. Ghosh, P. K. Kahol, Fabrication and characterization of p–n junctions based on ZnO and CuPc. Microelectronic Engineering, 88 (2011) 3067-3069.
    47.C. K. Ramesh, V. R. Reddy, and C. J. Choi, Electrical characteristics of molybdenum Schottky contacts on n-type GaN. Materials Science and Engineering: B, 112 (2004) 30-33.
    48.李成哲, Processing and Property Characterization of Undoped and Mg-doped GaN-based III-nitride Thin Films Prepared by Reactive Sputtering, 國立台灣科技大學材料科學與工程所博士學位論文, 2014.
    49.S. R. Jian, J. S. C. Jang, Y. S. Lai, P. F. Yang, C. S. Yang, H. C. Wen, and C. H. Tsai, Mechanical properties of InGaN thin films deposited by metal-organic chemical vapor deposition. Materials Chemistry and Physics,109 (2008) 360-364.

    QR CODE