簡易檢索 / 詳目顯示

研究生: 周芷伃
Chih-Yu Chou
論文名稱: 自交聯咪唑離子高分子之合成並探討其性質及高溫型質子 交換膜燃料電池之應用
Synthesis and Characterization of Self-Crosslinked Imidazolium-Containing Polyelectrolyte for High Temperature Proton Exchange Membrane Fuel Cell Applications
指導教授: 陳志堅
Jyh-Chien Chen
口試委員: 游進陽
Chin-Yang Yu
王英靖
Ying-Jing Wang
學位類別: 碩士
Master
系所名稱: 工程學院 - 材料科學與工程系
Department of Materials Science and Engineering
論文出版年: 2018
畢業學年度: 106
語文別: 中文
論文頁數: 73
中文關鍵詞: 自交聯咪唑離子高分子高溫型質子交換膜燃料電池
外文關鍵詞: Self-Crosslink, Imidazolium-Containing Polyelectrolyte, High Temperature Proton Exchange Membrane, Fuel Cell
相關次數: 點閱:193下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

本研究利用1-(4-Methoxyphenyl)-1H-imidazole (1)作為起始物,經過偶合以
及親核取代反應得到單體bis(4-(4-(1H-imidazol-1-yl)phenoxy)phenyl)methanone
(3) , 並且經過還原反應後得到可自交聯的單體bis(4-(4-(1H-imidazol-1-
yl)phenoxy)phenyl)methanol (4)。此兩種結構以DMF 作為溶劑進行親核取代反應
製備主鏈上帶有鹼性咪唑雜環的離子型高分子P-CO-Cl 以及P-OH-Cl,其固有
黏度(inherent viscosity)分別為0.3 以及2.1 dL/g。P-OH-Cl 可成功以溶液澆鑄法
塗佈成一張可饒式的薄膜,並且透過Friedel-Crafts 的酸交聯系統進行自交聯,在
浸泡至分別為20%、55%、65%、75%、85%五種不同重量百分濃度的磷酸內後,
能夠同時完成交聯系統以及磷酸的摻雜。P-OH-Cl 交聯前的熱裂解溫度(Td5%)為
252 ℃,而交聯後的熱裂解溫度(Td5%)皆在300 ℃以上,顯示良好的熱穩定性,且
殘餘重皆有所提升。P-OH-Cl 在浸泡不同濃度的磷酸,以100 ℃交聯24 小時後,
其磷酸摻雜之重量百分比分別為33、140、204、252 以及323%。P-OH-Cl 之薄
膜在未摻雜磷酸下,拉伸強度為22.70 MPa,而摻雜磷酸後,拉伸強度則介於0.17-
10.03 MPa 之間。將交聯後的P-OH-Cl 薄膜進行質子傳導率的測試,以85%磷酸
交聯的薄膜,於160 ℃下可達到0.73 S/cm 之質子傳導率,20%磷酸交聯的薄膜
於160 ℃下可達到0.02 S/cm 之質子傳導率。


A self-crosslinked imidazolium-containing polyelectrolyte (P-OH-Cl) was
prepared by the polymerization of bis(4-(4-(1H-imidazol-1-yl)phenoxy)phenyl)
methanol (4) with α,α′-dichloro-p-xylene in Anhydrous DMF at 80 ℃. The inherent
viscosity of P-OH-Cl was 2.1 dL/g, measured in a 0.5 dL/g of DMSO solution at 30
℃. P-OH-Cl could be prepared as transparent, flexible, and tough membranes by
solution casting. Furthermore, the formed membranes were immersed into five different
concentrations of phosphoric acid (20%, 55%, 65%, 75%, 85%) to crosslink and to
dope with PA at the same time. Thermogravimetric analysis (TGA) indicated that the
decomposition temperatures at 5% weight loss (Td5%) of P-OH-Cl was 252 ℃, and of
the crosslinked P-OH-Cl were higher than 300 ℃. It was found that these membranes
show good thermal stabilities. After heated in phosphoric acid for 24 hours, we could
obtain crosslinked P-OH-Cl membranes with phosphoric acid uptake (PA uptake%)
about 33%, 140%, 204%, 252%, and 323%, respectively. The tensile strength of P-OHCl
was 22.70 MPa without crosslinking and doping with phosphoric acid, and the
tensile strength were 0.17-10.03 MPa after doping with different concentrations of
phosphoric acid. The proton conductivity of crosslinked P-OH-Cl were 0.73, 0.57, 0.49,
0.22, 0.02 S/cm at 160 ℃ when immersed into PA concentration about 85%, 75%, 65%,
55%, 20%, respectively.

中文摘要........................................................................................................................ I Abstract ........................................................................................................................ II 目錄............................................................................................................................. III Figure 索引 ................................................................................................................. V Scheme 索引 ............................................................................................................ VII Table 索引 .............................................................................................................. VIII 第一章 緒論.............................................................................................................. 1 1.1 前言 ................................................................................................................................ 1 1.2 燃料電池之類型 ............................................................................................................ 2 1.3 PEMFC 之發電原理 ....................................................................................................... 4 1.4 PEMFC 之結構 ............................................................................................................... 6 第二章 文獻回顧...................................................................................................... 9 2.1 PEMFC 之歷程與發展 ................................................................................................... 9 2.1.1 全氟化低溫型質子交換膜 ..................................................................................... 9 2.1.2 高溫型質子交換膜介紹 ....................................................................................... 11 2.1.3 無機酸摻雜高分子之複合膜 ............................................................................... 12 2.2 離子液體之製備與性質 .............................................................................................. 13 2.3 離子液體固態電解質膜之製備 .................................................................................. 17 2.3.1 離子液體摻雜高分子之複合膜 (I) ..................................................................... 19 2.3.1.1 Solution casting method(溶液澆鑄法) ...................................................................... 19 2.3.1.2 IL-swollen method(離子液體浸泡法) ...................................................................... 19 2.3.2 離子液體內聚合或交聯 (II) ............................................................................... 21 2.3.2.1 含有乙烯基單體的自由基聚合 ................................................................................. 21 2.3.2.2 較大分子單體的交聯 ................................................................................................. 22 2.3.3 聚離子液體PILs (III) ........................................................................................... 24 2.4 無機酸摻雜離子型高分子之複合膜 .......................................................................... 26 2.5 Friedel-Crafts 的酸交聯系統 ........................................................................................ 30 2.6 研究動機與目的 .......................................................................................................... 32 第三章 實驗部分.................................................................................................... 34 3.1 實驗藥品 ...................................................................................................................... 34 3.2 實驗儀器 ...................................................................................................................... 36 3.3 單體合成 ...................................................................................................................... 37 3.3.1 1-(4-Methoxyphenyl)-1H-imidazole (1) ............................................................. 37 3.3.2 4-(Imidazol-1-yl)phenol (2) ................................................................................ 37 3.3.3 bis(4-(4-(1H-imidazol-1-yl)phenoxy)phenyl)methanone (3) .............................. 38 3.3.4 bis(4-(4-(1H-imidazol-1-yl)phenoxy)phenyl)methanol (4) ................................ 39 3.4 咪唑離子高分子之聚合 .............................................................................................. 40 3.4.1 高分子P-CO-Cl .................................................................................................... 40 3.4.2 高分子P-OH-Cl ................................................................................................... 41 3.5 咪唑離子高分子薄膜之製備方法 .............................................................................. 42 3.6 咪唑離子高分子之自交聯 .......................................................................................... 42 第四章 結果與討論................................................................................................ 43 4.1 單體合成與表徵 .......................................................................................................... 43 4.2 高分子合成 .................................................................................................................. 50 4.3 咪唑離子高分子磷酸摻雜與交聯之方法 .................................................................. 54 4.4 咪唑離子高分子之熱學性質 ...................................................................................... 56 4.5 咪唑離子高分子之尺寸安定性與凝膠分率 .............................................................. 58 4.6 咪唑離子高分子之機械強度 ...................................................................................... 60 4.7 質子傳導率測試 .......................................................................................................... 62 第五章 結論............................................................................................................ 66 參考文獻...................................................................................................................... 67

1. Dupuis, A.-C., Proton exchange membranes for fuel cells operated at
medium temperatures: Materials and experimental techniques. Prog. Mater
Sci. 2011, 56 (3), 289-327.
2. J. Larminie, A. D., Fuel Cell Systems Explained 2ed.; John Wiley & Son
Ltd: England, 2003.
3. Javaid, Z. S. M.; Matsuura, T., Polymer Membranes for Fuel Cells. 2009.
4. K. Kordesch, G. S., Fuel Cell and Their Application. New York 1996.
5. Asensio, J. A.; Sanchez, E. M.; Gomez-Romero, P., Proton-conducting
membranes based on benzimidazole polymers for high-temperature PEM
fuel cells. A chemical quest. Chem. Soc. Rev. 2010, 39 (8), 3210-3239.
6. Kraytsberg, A.; Ein-Eli, Y., Review of Advanced Materials for Proton
Exchange Membrane Fuel Cells. Energy & Fuels 2014, 28 (12), 7303-7330.
7. A. J. Appleby, F. R. F., Fuel Cell Handbook. New York, 1989.
8. Li, Q.; He, R.; Jensen, J. O.; Bjerrum, N. J., Approaches and Recent
Development of Polymer Electrolyte Membranes for Fuel Cells Operating
above 100 °C. Chemistry of Materials 2003, 15 (26), 4896-4915.
9. Zhang, Y.; Litt, M.; Savinell, R. F.; Wainright, J. S., Polym. Prepr. 1999, 40,
480.
10. Zhang, H.; Shen, P. K., Recent Development of Polymer Electrolyte
Membranes for Fuel Cells. Chem. Rev. 2012, 112 (5), 2780-2832.
11. Kim, S.-K.; Kim, T.-H.; Jung, J.-W.; Lee, J.-C., Polybenzimidazole
containing benzimidazole side groups for high-temperature fuel cell
applications. Polymer 2009, 50 (15), 3495-3502.
12. Kumbharkar, S. C.; Islam, M. N.; Potrekar, R. A.; Kharul, U. K., Variation
in acid moiety of polybenzimidazoles: Investigation of physico-chemical
properties towards their applicability as proton exchange and gas separation
membrane materials. Polymer 2009, 50 (6), 1403-1413.
13. Li, Q.; Jensen, J. O.; Savinell, R. F.; Bjerrum, N. J., High temperature proton
exchange membranes based on polybenzimidazoles for fuel cells. Prog.
Polym. Sci. 2009, 34 (5), 449-477.
14. Potrekar, R. A.; Kulkarni, M. P.; Kulkarni, R. A.; Vernekar, S. P.,
Polybenzimidazoles tethered with N-phenyl 1,2,4-triazole units as polymer
electrolytes for fuel cells. J. Polym. Sci., Part A: Polym. Chem. 2009, 47 (9),
68
2289-2303.
15. Chen, J.-C.; Chen, P.-Y.; Liu, Y.-C.; Chen, K.-H., Polybenzimidazoles
containing bulky substituents and ether linkages for high-temperature
proton exchange membrane fuel cell applications. J. Membr. Sci. 2016, 513,
270-279.
16. Li, Q.; He, R.; Gao, J. A.; Jensen, J. O.; Bjerrum, N. J., The CO poisoning
effect in PEMFCs operational at temperatures up to 200°C. J. Electrochem.
Soc. 2003, 150 (12), A1599-A1605.
17. Li, Q.; He, R.; Jensen, J. O.; Bjerrum, N. J., PBI-Based Polymer Membranes
for High Temperature Fuel Cells – Preparation, Characterization and Fuel
Cell Demonstration. Fuel Cells 2004, 4 (3), 147-159.
18. Pan, C.; He, R.; Li, Q.; Jensen, J. O.; Bjerrum, N. J.; Hjulmand, H. A.;
Jensen, A. B., Integration of high temperature PEM fuel cells with a
methanol reformer. J. Power Sources 2005, 145 (2), 392-398.
19. 黃靖穎; 劉政宏; 王文琳, 高溫型質子交換膜燃料電池與雙極板之高
溫化學穩定驗證技術. Journal of Taiwan Energy 2015, 2 ( 1), 39-52.
20. Bouchet, R.; Siebert, E., Proton conduction in acid doped
polybenzimidazole. Solid State Ionics 1999, 118 (3–4), 287-299.
21. Yang, J.; Li, Q.; Cleemann, L. N.; Xu, C.; Jensen, J. O.; Pan, C.; Bjerrum,
N. J.; He, R., Synthesis and properties of poly(aryl sulfone benzimidazole)
and its copolymers for high temperature membrane electrolytes for fuel cells.
J. Mater. Chem. 2012, 22 (22), 11185-11195.
22. Litt, M.; Ameri, R.; Wang, Y.; Savinell, R.; Wainwright, J.,
Polybenzimidazoles/Phosphoric Acid Solid Polymer Electrolytes:
Mechanical and Electrical Properties. MRS Proceedings 1998, 548, 313.
23. Wainright, J. S.; Wang, J. T.; Weng, D.; Savinell, R. F.; Litt, M., Acid-Doped
Polybenzimidazoles: A New Polymer Electrolyte. J. Electrochem. Soc.
1995, 142 (7), L121-L123.
24. Wilkes, J. S.; Zaworotko, M. J. J., Chem. Soc. Chem. Commun. 1992.
25. Sheldon, R., Catalytic reactions in ionic liquids. Chem. Commun. 2001,
(23), 2399-2407.
26. Wasserscheid, P.; Keim, W.; Angew, A., Chem. Int 2000, 39, 3772.
27. Christoph, T. C.; Christian, M.; Willi, B.; Sebastian, R.; André, H.; Rainer,
H., Modern Separation Techniques for the Efficient Workup in Organic
Synthesis. Angew. Chem. Int. Ed. 2002, 41 (21), 3964-4000.
69
28. Welton, T., Room-Temperature Ionic Liquids. Solvents for Synthesis and
Catalysis. Chem. Rev. 1999, 99 (8), 2071-2084.
29. Díaz, M.; Ortiz, A.; Ortiz, I., Progress in the use of ionic liquids as
electrolyte membranes in fuel cells. J. Membr. Sci. 2014, 469, 379-396.
30. Nishimoto, A.; Agehara, K.; Furuya, N.; Watanabe, T.; Watanabe, M., High
Ionic Conductivity of Polyether-Based Network Polymer Electrolytes with
Hyperbranched Side Chains. Macromolecules 1999, 32 (5), 1541-1548.
31. Wang, Y., Recent research progress on polymer electrolytes for dyesensitized
solar cells. Sol. Energy Mater. Sol. Cells 2009, 93 (8), 1167-1175.
32. Jeong, P. M.; Ilyoung, C.; Jaewan, H.; Onnuri, K., Polymer electrolytes
integrated with ionic liquids for future electrochemical devices. J. Appl.
Polym. Sci. 2013, 129 (5), 2363-2376.
33. Fernicola, A.; Scrosati, B.; Ohno, H., Potentialities of ionic liquids as new
electrolyte media in advanced electrochemical devices. Ionics 2006, 12 (2),
95-102.
34. Hayashi, K.; Nemoto, Y.; Akuto, K.; Sakurai, Y., Alkylated imidazolium
salt electrolyte for lithium cells. J. Power Sources 2005, 146 (1), 689-692.
35. Sakaebe, H.; Matsumoto, H.; Tatsumi, K., Discharge–charge properties of
Li/LiCoO2 cell using room temperature ionic liquids (RTILs) based on
quaternary ammonium cation – Effect of the structure. J. Power Sources
2005, 146 (1), 693-697.
36. Ye, Y.-S.; Rick, J.; Hwang, B.-J., Ionic liquid polymer electrolytes. J. Mater.
Chem. A 2013, 1 (8), 2719-2743.
37. Galiński, M.; Lewandowski, A.; Stępniak, I., Ionic liquids as electrolytes.
Electrochim. Acta 2006, 51 (26), 5567-5580.
38. Rana, U. A.; Forsyth, M.; MacFarlane, D. R.; Pringle, J. M., Toward protic
ionic liquid and organic ionic plastic crystal electrolytes for fuel cells.
Electrochim. Acta 2012, 84, 213-222.
39. Watanabe, M.; Yamada, S.-I.; Sanui, K.; Ogata, N., High ionic conductivity
of new polymer electrolytes consisting of polypyridinium, pyridinium and
aluminium chloride. J. Chem. Soc., Chem. Commun. 1993, (11), 929-931.
40. Le Bideau, J.; Viau, L.; Vioux, A., Ionogels, ionic liquid based hybrid
materials. Chem. Soc. Rev. 2011, 40 (2), 907-925.
41. Yasuda, T.; Nakamura, S.-i.; Honda, Y.; Kinugawa, K.; Lee, S.-Y.; Watanabe,
M., Effects of Polymer Structure on Properties of Sulfonated
70
Polyimide/Protic Ionic Liquid Composite Membranes for Nonhumidified
Fuel Cell Applications. ACS Applied Materials & Interfaces 2012, 4 (3),
1783-1790.
42. Yun, Y. S.; Kim, J. H.; Lee, S.-Y.; Shim, E.-G.; Kim, D.-W., Cycling
performance and thermal stability of lithium polymer cells assembled with
ionic liquid-containing gel polymer electrolytes. J. Power Sources 2011,
196 (16), 6750-6755.
43. Doyle, M.; Choi, S. K.; Proulx, G., High-Temperature Proton Conducting
Membranes Based on Perfluorinated Ionomer Membrane-Ionic Liquid
Composites. J. Electrochem. Soc. 2000, 147 (1), 34-37.
44. Bennett, M. D.; Leo, D. J.; Wilkes, G. L.; Beyer, F. L.; Pechar, T. W., A
model of charge transport and electromechanical transduction in ionic
liquid-swollen Nafion membranes. Polymer 2006, 47 (19), 6782-6796.
45. Mistry, M. K.; Subianto, S.; Choudhury, N. R.; Dutta, N. K., Interfacial
Interactions in Aprotic Ionic Liquid Based Protonic Membrane and Its
Correlation with High Temperature Conductivity and Thermal Properties.
Langmuir 2009, 25 (16), 9240-9251.
46. Zhang, H.; Wu, W.; Wang, J.; Zhang, T.; Shi, B.; Liu, J.; Cao, S., Enhanced
anhydrous proton conductivity of polymer electrolyte membrane enabled by
facile ionic liquid-based hoping pathways. J. Membr. Sci. 2015, 476, 136-
147.
47. Noda, A.; Watanabe, M., Highly conductive polymer electrolytes prepared
by in situ polymerization of vinyl monomers in room temperature molten
salts. Electrochim. Acta 2000, 45 (8), 1265-1270.
48. Susan, M. A. B. H.; Kaneko, T.; Noda, A.; Watanabe, M., Ion Gels Prepared
by in Situ Radical Polymerization of Vinyl Monomers in an Ionic Liquid
and Their Characterization as Polymer Electrolytes. J. Am. Chem. Soc. 2005,
127 (13), 4976-4983.
49. Klingshirn, M. A.; Spear, S. K.; Subramanian, R.; Holbrey, J. D.;
Huddleston, J. G.; Rogers, R. D., Gelation of Ionic Liquids Using a Cross-
Linked Poly(Ethylene Glycol) Gel Matrix. Chemistry of Materials 2004, 16
(16), 3091-3097.
50. Matsumoto, K.; Endo, T., Synthesis of Ion Conductive Networked Polymers
Based on an Ionic Liquid Epoxide Having a Quaternary Ammonium Salt
Structure. Macromolecules 2009, 42 (13), 4580-4584.
71
51. Matsumoto, K.; Endo, T., Confinement of Ionic Liquid by Networked
Polymers Based on Multifunctional Epoxy Resins. Macromolecules 2008,
41 (19), 6981-6986.
52. Brown, R. H.; Duncan, A. J.; Choi, J.-H.; Park, J. K.; Wu, T.; Leo, D. J.;
Winey, K. I.; Moore, R. B.; Long, T. E., Effect of Ionic Liquid on
Mechanical Properties and Morphology of Zwitterionic Copolymer
Membranes. Macromolecules 2010, 43 (2), 790-796.
53. Chen, H.; Choi, J.-H.; Salas-de la Cruz, D.; Winey, K. I.; Elabd, Y. A.,
Polymerized Ionic Liquids: The Effect of Random Copolymer Composition
on Ion Conduction. Macromolecules 2009, 42 (13), 4809-4816.
54. Mori, H.; Yahagi, M.; Endo, T., RAFT Polymerization of NVinylimidazolium
Salts and Synthesis of Thermoresponsive Ionic Liquid
Block Copolymers. Macromolecules 2009, 42 (21), 8082-8092.
55. Marcilla, R.; Alberto Blazquez, J.; Rodriguez, J.; Pomposo Jose, A.;
Mecerreyes, D., Tuning the solubility of polymerized ionic liquids by
simple anion-exchange reactions. J. Polym. Sci., Part A: Polym. Chem.
2003, 42 (1), 208-212.
56. Tang, H.; Tang, J.; Ding, S.; Radosz, M.; Shen, Y., Atom transfer radical
polymerization of styrenic ionic liquid monomers and carbon dioxide
absorption of the polymerized ionic liquids. J. Polym. Sci., Part A: Polym.
Chem. 2005, 43 (7), 1432-1443.
57. Bara, J. E.; Gabriel, C. J.; Hatakeyama, E. S.; Carlisle, T. K.; Lessmann, S.;
Noble, R. D.; Gin, D. L., Improving CO2 selectivity in polymerized roomtemperature
ionic liquid gas separation membranes through incorporation
of polar substituents. J. Membr. Sci. 2008, 321 (1), 3-7.
58. Tang, J.; Tang, H.; Sun, W.; Radosz, M.; Shen, Y., Poly(ionic liquid)s as
new materials for CO2 absorption. J. Polym. Sci., Part A: Polym. Chem.
2005, 43 (22), 5477-5489.
59. Ohno, H., Design of Ion Conductive Polymers Based on Ionic Liquids.
Macromolecular Symposia 2007, 249-250 (1), 551-556.
60. Hirao, M.; Ito, K.; Ohno, H., Preparation and polymerization of new organic
molten salts; N-alkylimidazolium salt derivatives. Electrochim. Acta 2000,
45 (8), 1291-1294.
61. Ogihara, W.; Washiro, S.; Nakajima, H.; Ohno, H., Effect of cation structure
on the electrochemical and thermal properties of ion conductive polymers
72
obtained from polymerizable ionic liquids. Electrochim. Acta 2006, 51 (13),
2614-2619.
62. Yoshizawa, M.; Ogihara, W.; Ohno, H., Novel polymer electrolytes
prepared by copolymerization of ionic liquid monomers. Polym. Adv.
Technol. 2002, 13 (8), 589-594.
63. Yoshizawa, M.; Hirao, M.; Ito-Akita, K.; Ohno, H., Ion conduction in
zwitterionic-type molten salts and their polymers. J. Mater. Chem. 2001, 11
(4), 1057-1062.
64. Nakajima, H.; Ohno, H., Preparation of thermally stable polymer
electrolytes from imidazolium-type ionic liquid derivatives. Polymer 2005,
46 (25), 11499-11504.
65. Li, M.; Zhang, H.; Shao, Z.-G., Quaternized Poly(phthalazinone ether
sulfone ketone) Membrane Doped with H3PO4 for High-Temperature
PEMFC Operation. Electrochem. Solid-State Lett. 2006, 9 (2), A60-A63.
66. Li, M.; Scott, K.; Wu, X., A poly(R1R2R3)–N+/H3PO4 composite
membrane for phosphoric acid polymer electrolyte membrane fuel cells. J.
Power Sources 2009, 194 (2), 811-814.
67. Yang, J.; Li, Q.; Jensen, J. O.; Pan, C.; Cleemann, L. N.; Bjerrum, N. J.; He,
R., Phosphoric acid doped imidazolium polysulfone membranes for high
temperature proton exchange membrane fuel cells. J. Power Sources 2012,
205, 114-121.
68. Ma, W.; Zhao, C.; Lin, H.; Zhang, G.; Ni, J.; Wang, J.; Wang, S.; Na, H.,
High-temperature water-free proton conducting membranes based on
poly(arylene ether ketone) containing pendant quaternary ammonium
groups with enhanced proton transport. J. Power Sources 2011, 196 (22),
9331-9338.
69. Zhang, N.; Wang, B.; Zhao, C.; Wang, S.; Zhang, Y.; Bu, F.; Cui, Y.; Li, X.;
Na, H., Quaternized poly (ether ether ketone)s doped with phosphoric acid
for high-temperature polymer electrolyte membrane fuel cells. Journal of
Materials Chemistry A 2014, 2 (34), 13996-14003.
70. Li, Q.; Liu, L.; Liang, S.; Li, Q.; Jin, B.; Bai, R., A novel poly(2,6-dimethyl-
1,4-phenylene oxide) with pendant imidazolium groups for hightemperature
proton exchange membrane. Polymer Chemistry 2014, 5 (7),
2425-2432.
71. Xu, C.; Scott, K.; Li, Q.; Yang, J.; Wu, X., A Quaternary Polybenzimidazole
73
Membrane for Intermediate Temperature Polymer Electrolyte Membrane
Fuel Cells. Fuel Cells 2012, 13 (2), 118-125.
72. Erdemi, H.; Akbey, Ü.; Meyer, W. H., Conductivity behavior and solid state
NMR investigation of imidazolium-based polymeric ionic liquids. Solid
State Ionics 2010, 181 (35), 1586-1595.
73. Song, H.; Lee Seung, C.; Heo Hye, Y.; Kim Dong, I.; Lee, D.-H.; Lee Ju,
H.; Chang Ji, Y., Improvement of thermal stability of sulfonated
polyphosphazenes by introducing a self-crosslinkable group. J. Polym. Sci.,
Part A: Polym. Chem. 2008, 46 (17), 5850-5858.
74. Li, H.; Zhang, G.; Wu, J.; Zhao, C.; Jia, Q.; Lew, C. M.; Zhang, L.; Zhang,
Y.; Han, M.; Zhu, J., A facile approach to prepare self-cross-linkable
sulfonated poly(ether ether ketone) membranes for direct methanol fuel
cells. J. Power Sources 2010, 195 (24), 8061-8066.
75. 吳晉安. Synthesis and Characterization of Novel Polyelectrolytes and Their
Applications on High Temperature Proton Exchange Membrane Fuel Cell.
NTUST, 2015.
76. Susan, M. A. B. H.; Noda, A.; Mitsushima, S.; Watanabe, M., Bronsted
acid-base ionic liquids and their use as new materials for anhydrous proton
conductors. Chem. Commun. 2003, (8), 938-939.
77. Feng, S.; Shang, Y.; Wang, Y.; Liu, G.; Xie, X.; Dong, W.; Xu, J.; Mathur,
V. K., Synthesis and crosslinking of hydroxyl-functionalized sulfonated
poly(ether ether ketone) copolymer as candidates for proton exchange
membranes. J. Membr. Sci. 2010, 352 (1-2), 14-21.
78. Chen, J.-C.; Chen, P.-Y.; Lee, S.-W.; Liou, G.-L.; Chen, C.-J.; Lan, Y.-H.;
Chen, K.-H., Synthesis of soluble polybenzimidazoles for high-temperature
proton exchange membrane fuel cell (PEMFC) applications. React. Funct.
Polym. 2016, 108, 122-129.

無法下載圖示 全文公開日期 2023/08/29 (校內網路)
全文公開日期 本全文未授權公開 (校外網路)
全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
QR CODE