簡易檢索 / 詳目顯示

研究生: 胡安廷
An-Ting Hu
論文名稱: 面板旋轉式顯示系統之成像品質預測
Imaging Quality Prediction of Flat-panel Spinning Display Systems
指導教授: 孫沛立
Pei-Li Sun
口試委員: 陳鴻興
林宗翰
胡國瑞
學位類別: 碩士
Master
系所名稱: 應用科技學院 - 色彩與照明科技研究所
Graduate Institute of Color and Illumination Technology
論文出版年: 2021
畢業學年度: 109
語文別: 中文
論文頁數: 90
中文關鍵詞: 平面顯示器多視角立體顯示器體積式顯示器成像品質時間多工
外文關鍵詞: flat-panel displays, multiview 3D display, volumetric display, image quality, time division multiplexing
相關次數: 點閱:149下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

隨著平面顯示器技術的快速發展,從傳統的CRT到LCD,再到現今的OLED、Micro LED,顯示器的響應速度、厚薄、色域以及可視角範圍都有了很大的改進。除了平面顯示器的規格提升外,人們也努力追求與過去不同的視覺體驗,例如立體顯示、360度虛擬實境顯示等。平面立體顯示器由於觀看位置受限,因此針對展場開放空間觀看者可隨意移動的體積式顯示技術應運而生。
利用發展成熟的面板顯示器,進行旋轉而得到立體感知的顯示技術,本研究將其合稱為「面板旋轉式顯示技術」,其中包含了被稱為「假3D」的「全方向多視角顯示技術」以及「真3D」的「旋轉式體積掃描顯示技術」。由於顯示器硬體參數的限制,面板旋轉式顯示系統的成像品質不佳,包含混疊、運動模糊等。相較於空間多工的立體顯示,影響面板旋轉式顯示的成像品質因素更多更複雜。
本研究提出了一套面板旋轉式顯示成像模擬系統,以及數個評估該系統成像品質的模組。利用這些模組,可協助系統設計者優化顯示品質。
此外,本研究也在當前可以達到的系統硬體參數之下,利用旋轉交錯掃描方式,改善旋轉式體積掃描的成像品質。另一方面也經由人因實驗驗證交錯掃描方式能有效改善顯示系統閃爍明顯與對比不足的問題。


With the rapid development of flat-panel display technology, from CRTs to LCDs to today's OLEDs and Micro LEDs, the response time, thickness, color gamut, and viewing angle of displays have been greatly improved. In addition to the improvement of flat-panel displays, people are also striving to pursue newly visual experiences, such as stereoscopic displays and 360-degree virtual reality displays. Due to the limited viewing position of the flat stereo display, volumetric display technologies that allow viewers to move freely in the open space of the exhibition site are under development.
We called the display, which provide the depth cue based on the spinning of highly developed flat-panel display as “flat-panel spinning display.” There are two types of display systems based on the flat-panel spinning display. The first is called “all-around display”, which is the so-called fake 3D display. The second type is called “swept-volume display”, which is a kind of the volumetric display, and it is also known as true 3D display. Due to the limitation of the display hardware parameters, the image quality of the flat-panel spinning display systems is not good, including aliasing, motion blur, etc. Compared with the spatially multiplexed stereo display, there are more complicated factors affecting the image quality of the flat-panel spinning displays.
This research proposes a set of imaging simulation system for the flat-panel spinning displays and several modules to evaluate the imaging quality of the displays. Using these modules can assist system designers to optimize display quality.
In addition, this research also uses the interlaced spinning method to improve the imaging quality of the swept-volume display under the current available system hardware parameters. On the other hand, it has been verified through a psychophysical experiment that the interlaced scanning method can effectively reduce the flicker and enhance the contrast of the display system.

論文摘要 II ABSTRACT III 誌謝 V 目錄 VI 圖目錄 IX 表目錄 XIII 第一章 緒論 1 1.1 研究動機與目的 1 1.2 研究限制 1 1.3 論文大綱 2 第二章 文獻探討 4 2.1 立體顯示技術 4 2.1.1 裸眼式立體顯示技術 4 2.1.2 非裸眼式立體顯示技術 9 2.2 成像品質 10 2.2.1 靜態影像 11 2.2.2 動態影像 13 2.2.3 調製轉換函數 15 2.3 視覺評價指標 16 2.3.1 人眼對比敏感度 16 2.3.2 閃光融合閾值 18 第三章 面板旋轉式顯示系統之模擬系統設計 20 3.1 相機模型 21 3.2 三維模型擷取 24 3.2.1 模型擷取 24 3.2.2 交錯式掃描之模型擷取 27 3.3 成像模擬 28 3.3.1 顯示器參數 28 3.3.2 成像模擬之限制條件 30 3.3.3 成像模擬 32 第四章 全方向多視角顯示器之成像品質預測與對照 34 4.1 調製轉換函數 35 4.2 閃爍敏感度頻譜 38 4.3 全方向多視角顯示器之模擬與實體對照 38 4.3.1 實驗設備參數 39 4.3.2 實驗設計 42 4.3.3 實驗結果 43 4.4 顯示器參數對於全方向多視角顯示器之成像品質的影響 47 4.4.1 調製轉換函數 47 4.4.2 閃爍敏感度頻譜 52 第五章 旋轉式體積掃描顯示器之成像品質探討 55 5.1 實驗目的 55 5.2 實驗設計 55 5.2.1 三維模型 55 5.2.2 實驗變因 58 5.2.3 實驗量尺設計 59 5.2.4 受試者 60 5.2.5 實驗環境與設備 60 5.2.6 實驗流程 63 5.3 實驗結果 64 5.3.1 閃爍可接受度 65 5.3.2 對比度 67 5.3.3 均勻度 68 第六章 結論與建議 70 參考文獻 72 附錄 77 A 相機畸變量測 77 B 對照實驗之顯示器亮度分佈 79 C 對照實驗之優化:相機校正技術 81 D 對照實驗之優化:軟體同步 82 E 模擬系統操作介面 83 F 心理物理學視覺實驗問卷 85

[1] J. Geng, “Three-dimensional display technologies,” in Adv. Opt. Photonics, vol. 5, no. 4, pp. 456–535, 2013, doi: 10.1364/AOP.5.000456.
[2] J. S. Munoz-Arango, D. Reiners, and C. Cruz-Neira, “Multi-user display systems, compendium of the state of the art,” in Electron. Imaging, vol. 2019, no. 3, pp. 645–1–645–13, 2019, doi: 10.2352/ISSN.2470-1173.2019.3.SDA-645.
[3] N. S. Holliman, N. A. Dodgson, G. E. Favalora, and L. Pockett, “Three-dimensional displays: A review and applications analysis,” in IEEE Trans. Broadcast., vol. 57, no. 2, pp. 362–371, 2011, doi: 10.1109/TBC.2011.2130930.
[4] M. Hackett, “A Review and Selective Analysis of 3D Display Technologies for Anatomical Education,” in Electronic Theses and Dissertations, 2004-2019, 2018.
[5] 黃怡菁、黃乙白、謝漢萍,3D立體顯示技術,科學發展,46–52,2010。
[6] M. Gately, Y. Zhai, M. Yeary, E. Petrich, and L. Sawalha, “A three-dimensional swept volume display based on LED arrays,” in IEEE/OSA J. Disp. Technol., vol. 7, no. 9, pp. 503–514, 2011, doi: 10.1109/JDT.2011.2157455.
[7] B. G. Blundell and A. J. Schwarz, “The classification of volumetric display systems: Characteristics and predictability of the image space,” in IEEE Trans. Vis. Comput. Graph., vol. 8, no. 1, pp. 66–75, 2002, doi: 10.1109/2945.981852.
[8] C. Sun, X. Chang, M. Cai, and J. Liu, “An improved design of 3D swept-volume volumetric display,” in J. Comput., vol. 9, no. 1, pp. 235–242, 2014, doi: 10.4304/jcp.9.1.235-242.
[9] L. Sawalha, M. P. Tull, M. B. Gately, J. J. Sluss, M. Yeary, and R. D. Barnes, “A large 3D swept-volume video display,” in IEEE/OSA J. Disp. Technol., vol. 8, no. 5, pp. 256–268, 2012, doi: 10.1109/JDT.2012.2183339.
[10] E. P. Berlin Jr., “Three-Dimensional Display,” US Patent 4,160,973, 1979.
[11] M. Yamaguchi, “Light-field and holographic three-dimensional displays,” in J. Opt. Soc. Amer. A, vol. 33, no. 12, pp. 2348–2364, 2016, doi: 10.1364/JOSAA.33.002348.
[12] N. Kim et al “3D display technology,” in Disp. Imag., vol. 1, no. 1, pp. 73–95, 2014.
[13] T. Kawai, “3D displays and applications,” in Displays, vol. 23, no. 1–2, pp. 49–56, 2002, doi: 10.1016/S0141-9382(02)00009-4.
[14] D. Saredakis, A. Szpak, B. Birckhead, H. A. D. Keage, A. Rizzo, and T. Loetscher, “Factors associated with virtual reality sickness in head-mounted displays: A systematic review and meta-analysis,” in Front. Hum. Neurosci., vol. 14, 2020, doi: 10.3389/fnhum.2020.00096.
[15] J. Han, S. H. Bae, and H. J. Suk, “Comparison of visual discomfort and visual fatigue between head-mounted display and smartphone,” in Proc. Int. Symp. Electronic Imaging, vol. 2017, no. 14, pp. 212–217, 2017, doi: 10.2352/ISSN.2470-1173.2017.14.HVEI-146.
[16] 黃日鋒、詹文鑫、陳鴻興、胡國瑞、徐道義、孫沛立、羅梅君,顯示色彩工程(第二版),全華圖書,2011。
[17] H. Nyquist, “Certain topics in telegraph transmission theory,” in Trans. Amer. Inst. Electr. Eng., vol. 47 , pp. 617–644, 1928, doi: 10.1109/T-AIEE.1928.5055024.
[18] C. J. Schuler, M. Hirsch, S. Harmeling, and B. Schölkopf, “Blind correction of optical aberrations,” in Proc. Eur. Conf. Comp. Vis., pp. 187–200, 2012, doi: 10.1007/978-3-642-33712-3_14.
[19] H. Tang and K. N. Kutulakos, “What does an aberrated photo tell us about the lens and the scene?,” in IEEE Int. Conf. Comput. Photogr., pp. 1–10, 2013, doi: 10.1109/ICCPhot.2013.6528316.
[20] W. J. Smith, Modern Optical Engineering: The Design of Optical Systems. New York, NY, USA: McGraw-Hill, 2005.
[21] D. M. Hoffman, V. I. Karasev, and M. S. Banks, “Temporal presentation protocols in stereoscopic displays: Flicker visibility, perceived motion, and perceived depth,” in J. Soc. Inf. Disp., vol. 19, no. 3, pp. 271–297, 2011, doi: 10.1889/jsid19.3.271.
[22] P. V. Johnson, J. Kim, and M. S. Banks, “Stereoscopic 3D display technique using spatiotemporal interlacing has improved spatial and temporal properties,” in Opt. Express, vol. 23, no. 7, pp. 9252–9275, 2015, doi: 10.1364/oe.23.009252.
[23] B. A.Wandell, Foundation of Vision. Sunderland, MA, USA: Sinauer Associates, 1995.
[24] M. D. Fairchild, Color Appearance Models. New York, NY, USA: Wiley, 2005.
[25] S. Hecht and S. Shlaer, “Intermittent stimulation by light : V. the relation between intensity and critical frequency for different parts of the spectrum.,” in J. Gen. Physiol., vol. 19, no. 6, pp. 965–977, 1936, doi: 10.1085/jgp.19.6.965.
[26] Z. Zhang, “Flexible camera calibration by viewing a plane from unknown orientations,” in Proc. IEEE Int. Conf. Comput. Vis., vol. 1, pp. 666–673, 1999, doi: 10.1109/iccv.1999.791289.
[27] Z. Zhang, “A flexible new technique for camera calibration,” in IEEE Trans. Pattern Anal. Mach. Intell., vol. 22, no. 11, pp. 1330–1334, 2000, doi: 10.1109/34.888718.
[28] H. Maeda, K. Hirose, J. Yamashita, K. Hirota, and M. Hirose, “All-around display for video avatar in real world,” in Proc. 2nd IEEE/ACM Int. Symp. Mix. Augment. Reality, pp. 288–289, 2003, doi: 10.1109/ISMAR.2003.1240724.
[29] P. V. Johnson, J. Kim, D. M. Hoffman, A. D. Vargas, and M. S. Banks, “Motion artifacts on 240-Hz OLED stereoscopic 3D displays,” in J. Soc. Inf. Disp., vol. 22, no. 8, pp. 393–403, 2014, doi: 10.1002/jsid.257.
[30] Y. F. Chen, C. C. Chen, and K. H. Chen, “Mixed color sequential technique for reducing color breakup and motion blur effects,” in IEEE/OSA J. Disp. Technol., vol. 3, no. 4, pp. 377–385, 2007, doi: 10.1109/JDT.2007.903160.
[31] N. Otsu, “A threshold selection method from gray-level histograms,” in IEEE Trans. Syst. Man. Cybern., vol. 9, no. 1, pp. 62–66, 1979, doi: 10.1109/TSMC.1979.4310076.
[32] A. Wilkins, J. Veitch, and B. Lehman, “LED lighting flicker and potential health concerns: IEEE standard PAR1789 update,” in Proc. IEEE Energy Convers. Congr. Exposit., pp. 171–178, 2010, doi: 10.1109/ECCE.2010.5618050.
[33] X. Zhang and B. A. Wandell, “A spatial extension of CIELAB for digital color-image reproduction,” in J. Soc. Inf. Disp., vol. 5, no. 1, pp. 61–63, 1997, doi: 10.1889/1.1985127.

無法下載圖示 全文公開日期 2024/10/25 (校內網路)
全文公開日期 2024/10/25 (校外網路)
全文公開日期 2024/10/25 (國家圖書館:臺灣博碩士論文系統)
QR CODE