簡易檢索 / 詳目顯示

研究生: 黃紀元
Ji-Yuan Huang
論文名稱: 高畫質顯示器2D與3D模式彩色影像品質分析與評價
Image Quality Evaluation of High Definition Displays with 2D and 3D modes.
指導教授: 陳鴻興
Hung-Shing Chen
口試委員: 孫沛立
Pei-Li Sun
林宗翰
Tzung-Han Lin
學位類別: 碩士
Master
系所名稱: 應用科技學院 - 色彩與照明科技研究所
Graduate Institute of Color and Illumination Technology
論文出版年: 2015
畢業學年度: 103
語文別: 中文
論文頁數: 89
中文關鍵詞: 影像品質評價影像分類
外文關鍵詞: evaluation of image quality, image classification
相關次數: 點閱:188下載:8
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本論文探討以RGB三色型與RGBW四色型曲面OLED顯示器2D色彩影像品質,以及偏光式與快門式立體4K2K顯示器3D色彩影像品質,並比較顯示器在不同的電視模式(standard模式與cinema模式)對影像內容的影響。此外,OLED擁有廣視角優點和4K2K顯示器擁有超高畫質優點,本論文在OLED影像品質上,設計不同觀看視角對影像內容的影響;在4K2K顯示器影像品質上,設計不同解析度對影像內容的影響。本論文設計兩種實驗(實驗1與實驗2)
    RGB與RGBW曲面OLED顯示器2D色彩影像品質評價(實驗1),本實驗設定五個影像品質評價項目(喜好程度、自然程度、鮮豔程度、視角差異、黑度)來進行RGB OLED和RGBW OLED顯示器影像品質評價,本實驗使用7個測試影像,其影像都為自然景物,影像內主色分為紅色、膚色、黃色、綠色、青色、藍色、洋紅色等7色。實驗結果指出擁有廣色域優點的RGB OLED在鮮豔度方面有明顯效果,但在喜好度和自然度評價分數卻為劣勢,關鍵在於人類具有記憶色,色彩過於飽和的影像會顯得不自然,喜好度也會因此下降。在黑度評價上,RGBW OLED優於RGB OLED,視角差別程度兩台OLED顯示器變化差異一致。
    偏光式與快門式立體4K2K顯示器3D色彩影像品質評價(實驗2),本實驗設定八個影像品質評價項目(閃爍、鬼影、視覺舒適度、感知深度、整體影像品質、自然度、影像細節、整體喜好度)來進行評價,使用8張3D測試影像(side-by-side格式)進行評價實驗。研究結果指出PR type 3D顯示器在8個人因視覺評價項目中,分數都高於快門式3D顯示器,不論在不同環境照度下或是不同電視模式下。而解析度的提升,評價分數也隨之提升,除了快門式3D顯示器在閃爍評價中,有下降趨勢,由此可判斷解析度提升,快門式3D顯示器在畫素掃描頻率不夠,導致顯示器在切換左右side-by-side影像速度與快門式3D眼鏡接受訊號無法同步,閃爍程度明顯提升。
    透過以上兩個主觀視覺評價實驗,發現測試影像的選用會決定評價項目數據的準確度,所以本論文設計出影像分類評價實驗,透過一台具有sRGB標準LCD顯示器並在暗室下進行主觀視覺評價,實驗結果可將每張數位影像歸類在特定的分類群集上,並將測試影像歸入測試影像資料庫,提供以後研究之參考。


    This thesis studied on the quality of 2D images shown on the RGB-type and RGBW -type OLED displays and 3D images shown on the pattern retarder and shutter stereoscopic 4K2K displays, as well as comparing the influence of image contents with different picture modes (standard mode and cinema mode).
    In this thesis, two experiments were designed (Experiment-1 and Experiment-2). Experiment-1 is to evaluate subjective image qualities of curved OLED displays in standard mode and movie mode respectively. Five image quality indexes were designed to assess image qualities of RGB and RGBW OLED displays, including preference, naturalness, vivid, viewing angle and blackness. Although RGB OLED has larger color gamut ability than RGBW OLED theoretically; however, it is unlikely that RGB OLED can really contribute its wide-color-gamut characteristic into the image qualities, such as preference and naturalness items related to memory colors of familiar objects. Besides color-gamut characteristic, the other factors (e.g., tone response curve, color image processing) could also affect subject image quality assessment in the OLED TV systems.
    Experiment-2 is to evaluate 3D image qualities of 65-inch 3D TVs with a maximum resolution of 4K2K. Two kinds of glasses-type 3D TVs are tested: one is active pattern retarder type and the other is passive shutter-glasses type. In addition, two kinds of sub-experiments of visual assessment are designed. Experiment-2.1 is image quality assessment in terms of varying 3D TV types. Experiment-2.2 is image quality assessment in terms of varying 3D resolutions. The evaluation scores of 8 image quality items are combined to inspect the overall 3D image qualities of the 2K4K TVs.
    Through these two subjective visual evaluation experiments, we found that the selection of test images would determine the accuracy of the evaluated data, so in this paper, we designed image classification and image evaluation of experiments through a subjective visual evaluation experiment in darkroom and the results of each image can be categorized in a specific classification of clusters. This test images will be included in the test image database as a reference for the later research.

    中文摘要 i ABSTRACT ii 致謝 iii 目錄 iv 圖目錄 vii 表目錄 ix 第一章 緒論 10 1.1 研究背景 10 1.2 研究目的及動機 11 第二章 文獻探討 12 2.1 OLED色彩再現研究 12 2.2 RGBW系統設計 13 2.3 顯示器再現品質分析研究 15 2.4 人的深度感知 18 2.4.1 雙眼視差與立體感 18 2.4.2 眼球運動線索 20 2.5 立體影像成像原理 22 2.6 立體顯示器 23 2.6.1 偏光式立體顯示器 23 2.6.2 快門式立體顯示器 24 2.7 3D 串擾 25 第三章 研究方法 28 3.1 實驗架構 28 3.1.1 實驗1:「原色數目評價實驗」 29 3.1.2 實驗2:「偏光式/快門式評價實驗」 30 3.1.3 實驗3:「影像分類評價實驗」 31 3.2 實驗設備與影像 31 3.3 實驗設計 33 3.3.1 實驗1:「原色數目評價實驗」 33 3.3.2 實驗2:「偏光式/快門式評價實驗」 38 3.3.3 實驗3:「影像分類評價實驗」 44 3.4 實驗步驟 45 3.4.1 實驗1:「原色數目評價實驗」 45 3.4.2 實驗2:「偏光式/快門式評價實驗」 46 3.4.3 實驗3:「影像分類評價實驗」 48 第四章 研究結果 49 4.1 實驗1:「原色數目評價實驗」 49 4.1.1 面板色彩特性的量測與分析 49 4.1.2 顯示器影像品質視覺評價 54 4.2 實驗2:「偏光式/快門式評價實驗」 57 4.2.1 面板3D色彩特性的量測與分析 57 4.2.2 顯示器3D影像品質視覺評價 60 4.3 實驗3:「影像分類評價實驗」 63 第五章 結論與未來研究方向 67 5.1 結論 67 5.1.1 實驗1:「原色數目評價實驗」 67 5.1.2 實驗2:「偏光式/快門式評價實驗」 67 5.1.3 實驗3:「影像分類評價實驗」 68 5.2 未來研究方向 68 參考文獻 69 附錄1 視角差異程度 72 附錄2 Conference Paper (IDW 2014) 73 附錄3 Conference Paper (IDW 2014) 76 附錄4 測試影像的彩度、色相、明度直方圖 80

    [1] H. S. Chen, T. M. Wang, S. H. Chen, J. S. Liu, “Skin-color Correction Method Based on Hue Template Mapping for Wide Color Gamut LCD,” Color Research and Application, Vol. 36, no. 5, pp.335-348 (2011).
    [2] E. F. Kelley, “Considering Color Performance in Curved OLED TVs,” Information Display, Vol. 6, no.13, pp.2-7.
    [3] O. S. Kwon, I. S. Jang, T. Y. Park, Y. H. Ha, “Color Reproduction Considering the Average Picture Level and Flare Effect in PDP Displays,” IS&T/SID 15th Color Imaging Conf., pp.163-168 (2007).
    [4] Takatoshi Tsujimura, “OLED Technology Fundamentals and Applications,” Wiley (2012).
    [5] M. E. Miller, M. J. Murdoch, “RGB-to-RGBW conversion with current limiting for OLED displays,” Journal of the Society for Information Display, Vol. 17, Issue 3, pp.195–202, (2009).
    [6] M. Thomschke, K. Fehse, B. Richter, P. Wartenberg, R. Pfeifer, U. Vogel, “Active-Matrix OLED (AMOLED) Microdisplay for Augmented-Reality Applications with Improved Color Space,” IDW’ 13 (2013).
    [7] M. E. Miller, J. W. Hamer, J. E. Ludwicki, A. D. Arnold, “Exploiting the Flexibility of RGBW OLED Displays: Trading Color Saturation for Power,” SID’09 Digest (2009).
    [8] C. Lai, C. Tsai, “A modified stripe-RGBW TFT-LCD with image processing engine for mobile phone displays,” IEEE Trans. Consum. Electron., Vol. 53, no. 4, pp.1628–1633 (2007).
    [9] L.Wang, Y. Tu, and L. Chen, “Trade-off between luminance and color in RGBW displays for mobile-phone usage,” SID Symp. Dig. Tech. Papers, Vol. 38, Issue 1, pp.1142–1145 (2007).
    [10] J. G. R. Mourik, J. H. C. J. Stessen, “Method of driving displays comprising a conversion from the RGB color space to the RGBW color space,” U.S. display Patent2008/0204480 A1.
    [11] S. Lee, C. Kim, Y. Seo, and C. Hong, “Color conversion from RGB to a RGB+white while preserving hue and saturation,” Proc. IS&T/SID 10th Color Imaging Conference, pp.287–291 (2002).
    [12] K. J. Kwon, Y. H. Kim, “Scene-Adaptive RGB-to-RGBW Conversion Using Retinex Theory-Based Color Preservation,” IEEE, Journal of Display Technology, Vol. 8, pp.684-694 (2012).
    [13] M. J. Murdoch, M. E. Miller, “RGB to RGBW Conversion for OLED Displays,” SID’08 Digest, Vol. 39, Issue 1, pp.791-794 (2008).
    [14] Glossary on website of International Electrotechnical Commission, Online retrieval date: August 21, 2015, Web:http://std.iec.ch/terms/terms.nsf/9bc7f244dab1a789c12570590045fac8/c2605bc346e0fdecc12574bb002fe09e?OpenDocument
    [15] M. J. Murdoch, D. Sekulovski, I. Heynderickx, “Preferred color gamut boundaries for wide-gamut and multiprimary displays,” Color Research and Application (2013).
    [16] H. S. Chen, S. H. Chen, Y. H. Chao, R. Luo, P. L. Sun, “Applying Image-based Color Palette for Achieving High Image Quality for Displays,” Color Research and Application (2013).
    [17] O. Schreer, P. Kauff, T. Sikora, “Concepts and real-time systems in human centred communication,” 3D Videocommunication: Algorithms, John Wiley & Sons, pp. 219-231 (2005).
    [18] P. J. H. Seuntiëns, “Visual Experience of 3D TV”, Doctor doctoral thesis, Eindhoven University of Technology, Netherlands (2006).
    [19] C. D. Wickens, J. G. Hollands, Engineering Psychology and Human Performance, Spatial Displays, Pearson Education Taiwan Ltd. (2002).
    [20] 黃中政,「立體顯示器串擾與視覺舒適度評價」,碩士論文,國立台灣科技大學,台北市 15頁 (2012)
    [21] H. K. Hong, K. H. Lim, J. H. Kim, S. H. Park, H. S. Shin, D. G. Lee, H. Shin,“Angular dependence of the performance of stereoscopic liquid-crystal-display television using shutter glasses (SG)”, Journal of the Society for Information Display, Vol. 1071, no.11, pp.1903-0287 (2011).
    [22] L. Lipton, “Factors affecting "ghosting" in time-multiplexed piano-stereoscopic CRT display systems”, Proceedings of the SPIE, Vol. 761, pp. 75–78 (1987).
    [23] A. J. Woods, “How are Crosstalk and Ghosting defined in the Stereoscopic Literature,” Proceedings of SPIE Stereoscopic Displays and Applications XXII, Vol. 7863 (2011).
    [24] Society for Information Display (2012), “Information Display Measurements Standard”, Ver. 1.03, pp.86-88.
    [25] Bruce Justin Lindbloom, Online retrieval date: August 21, 2015, Web:http://www.brucelindbloom.com/
    [26] Garrett M. Johnson, Mark D. Fairchild “A top down description of S-CIELAB and CIEDE200”, Munsell Color Science Laboratory. Vol. 28, no. 6 (2003)

    QR CODE